Effect of The Garlic as Chelation Therapy in Reducing Lead and Cadmium Deposition on Suckling Mice

Authors

DOI:

https://doi.org/10.47352/bioactivities.2963-654X.240

Keywords:

cadmium, chelation, garlic, lead, suckling mice

Abstract

The study was conducted on suckling mice to determine the effects of chelation therapy in reducing the deposition of lead (Pb) and cadmium (Cd). A total of 45 suckling mice were randomly divided into three main groups A (control), B, and C. Groups B and C contained Pb and Cd, respectively, at a concentration of 100 mg/kg bwt with 0, 1.70, 3.35, and 6.70% garlic given (B1, B2, B3, B4, and C1, C2, C3, C4). Mice exposed to Pb and Cd exhibited pronounced toxic symptoms along with a marked decrease in total erythrocyte and total leukocyte count, hemoglobin levels, and packed cell volume. Additionally, there is a significant increase in serum glutamate pyruvate transaminase (SGPT) and serum glutamate oxaloacetate transaminase (SGOT) levels. The mean body weight of mice of groups B4, and C4 was the highest among the treated groups. Groups B1 and C1, exposed to Pb and Cd without garlic, showed significant declines in all parameters. Group A (control) shows stable and normal SGOT and SGPT levels. Group C1, exposed to Cd without garlic, experiences the highest increases in both SGOT (98.53 U/L) and SGPT (132.83 U/L), indicating severe liver damage. The group treated with Pb and Cd showed a significant reduction in total erythrocyte count, packed cell volume, and hemoglobin levels after 42-d of treatment. However, mice treated with a combination of Pb, Cd, and 6.70% garlic exhibited nearly normal levels of hematological and biochemical parameters. SGPT and SGOT levels were significantly decreased in all treated groups along with garlic. This experiment demonstrates that garlic possesses both protective and curative effects against Pb and Cd toxicity.

References

[1] Z. Rahman and V. P. Singh. (2019). "The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview". Environmental Monitoring and Assessment. 191 (7): 419. 10.1007/s10661-019-7528-7.

DOI: https://doi.org/10.1007/s10661-019-7528-7

[2] F. Hong, T. Jin, and A. Zhang. (2004). "Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population". Biometals. 17 (5): 573-80. 10.1023/b:biom.0000045741.22924.d8.

DOI: https://doi.org/10.1023/B:BIOM.0000045741.22924.d8

[3] A. Koyu, A. Gokcimen, F. Ozguner, D. S. Bayram, and A. Kocak. (2006). "Evaluation of the effects of cadmium on rat liver". Molecular and Cellular Biochemistry. 284 (1-2): 81-5. 10.1007/s11010-005-9017-2.

DOI: https://doi.org/10.1007/s11010-005-9017-2

[4] M. Tellez-Plaza, A. Navas-Acien, C. M. Crainiceanu, and E. Guallar. (2008). "Cadmium exposure and hypertension in the 1999-2004 National Health and Nutrition Examination Survey (NHANES)". Environmental Health Perspectives. 116 (1): 51-6. 10.1289/ehp.10764.

DOI: https://doi.org/10.1289/ehp.10764

[5] J. J. Kim, Y. S. Kim, and V. Kumar. (2019). "Heavy metal toxicity: An update of chelating therapeutic strategies". Journal of Trace Elements in Medicine and Biology. 54 : 226-231. 10.1016/j.jtemb.2019.05.003.

DOI: https://doi.org/10.1016/j.jtemb.2019.05.003

[6] M. F. McCarty. (2012). "Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure". Medical Hypotheses. 79 (5): 642-8. 10.1016/j.mehy.2012.07.043.

DOI: https://doi.org/10.1016/j.mehy.2012.07.043

[7] S. Porru and L. Alessio. (1996). "The use of chelating agents in occupational lead poisoning". Occupational Medicine (London). 46 (1): 41-8. 10.1093/occmed/46.1.41.

DOI: https://doi.org/10.1093/occmed/46.1.41

[8] A. M. Massadeh, S. A. Al-Safi, I. F. Momani, A. A. Alomary, Q. M. Jaradat, and A. S. AlKofahi. (2007). "Garlic (Allium sativum L.) as a potential antidote for cadmium and lead intoxication: cadmium and lead distribution and analysis in different mice organs". Biological Trace Element Research. 120 (1-3): 227-34. 10.1007/s12011-007-8017-3.

DOI: https://doi.org/10.1007/s12011-007-8017-3

[9] T. Miron, T. Bercovici, A. Rabinkov, M. Wilchek, and D. Mirelman. (2004). "[3H]Allicin: preparation and applications". Analytical Biochemistry. 331 (2): 364-9. 10.1016/j.ab.2004.03.054.

DOI: https://doi.org/10.1016/j.ab.2004.03.054

[10] L. Y. Chung. (2006). "The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide". Journal of Medicinal Food. 9 (2): 205-13. 10.1089/jmf.2006.9.205.

DOI: https://doi.org/10.1089/jmf.2006.9.205

[11] K. Kumari, P. Adhikari, A. Pandey, S. S. Samant, M. Lal, and V. Pande. (2024). "Influence of Solvent Polarity on Phytochemicals, Antioxidants, and Antimicrobial Properties of Delphinium denudatum: A Medicinal Herb from Sainj Valley, Himachal Pradesh, India". Bioactivities. 2 (1): 30-40. 10.47352/bioactivities.2963-654X.214.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.214

[12] B. P. Williams. (1982). "Hematology and urinalysis". Journal of Chemical Education. 59 (9). 10.1021/ed059p805.4.

DOI: https://doi.org/10.1021/ed059p805.4

[13] D. J. Meuten, F. M. Moore, T. A. Donovan, C. A. Bertram, R. Klopfleisch, R. A. Foster, R. C. Smedley, M. J. Dark, M. Milovancev, P. Stromberg, B. H. Williams, M. Aubreville, G. Avallone, P. Bolfa, J. Cullen, M. M. Dennis, M. Goldschmidt, R. Luong, A. D. Miller, M. A. Miller, J. S. Munday, P. Roccabianca, E. N. Salas, F. Y. Schulman, R. Laufer-Amorim, M. G. Asakawa, L. Craig, N. Dervisis, D. G. Esplin, J. W. George, M. Hauck, Y. Kagawa, M. Kiupel, K. Linder, K. Meichner, L. Marconato, M. L. Oblak, R. L. Santos, R. M. Simpson, H. Tvedten, and D. Whitley. (2021). "International Guidelines for Veterinary Tumor Pathology: A Call to Action". Veterinary Pathology. 58 (5): 766-794. 10.1177/03009858211013712.

DOI: https://doi.org/10.1177/03009858211013712

[14] A. S. Naylor, B. J. Edwards, and C. M. Robertson. (2023). "Effects of treatment dosage of whole-body cryotherapy upon post-match recovery of endocrine and biochemical markers in elite rugby league players: An experimental study". Health Science Reports. 6 (4): e1227. 10.1002/hsr2.1227.

DOI: https://doi.org/10.1002/hsr2.1227

[15] M. A. Hossain, M. A. Sayed, M. S. Jahan, M. Mostofa, and M. S. H. Khan. (1970). "Effect of garlic and vitamin B-complex in lead acetate induced toxicities in mice". Bangladesh Journal of Veterinary Medicine. 6 (2): 203-210. 10.3329/bjvm.v6i2.2337.

DOI: https://doi.org/10.3329/bjvm.v6i2.2337

[16] S. Rahman and S. Sultana. (2006). "Chemopreventive activity of glycyrrhizin on lead acetate mediated hepatic oxidative stress and its hyperproliferative activity in Wistar rats". Chemico-Biological Interactions. 160 (1): 61-9. 10.1016/j.cbi.2005.12.003.

DOI: https://doi.org/10.1016/j.cbi.2005.12.003

[17] J. L. Young, X. Yan, J. Xu, X. Yin, X. Zhang, G. E. Arteel, G. N. Barnes, J. C. States, W. H. Watson, M. Kong, L. Cai, and J. H. Freedman. (2019). "Cadmium and High-Fat Diet Disrupt Renal, Cardiac and Hepatic Essential Metals". Scientific Reports. 9 (1): 14675. 10.1038/s41598-019-50771-3.

DOI: https://doi.org/10.1038/s41598-020-58517-2

[18] A. Dhar and P. K. Banerjee. (1983). "Impact of lead on nucleic acids and incorporation of leveled amino acid into protein.". International Journal of Vitamin and Nutrition Research. 53 (3): 349-354.

[19] M. U. Eteng, F. C. Onwuka, E. O. Akpanyung, N. C. Osuchukwu, S. C. Bassey, and P. Nwankpa. (2012). "Reversal of cadmium-induced toxicity following dietary supplementation with garlic, ginger and cabbage in male Wistar rats". Journal of Natural Products and Plant Resources. 2 (1): 169-174.

[20] C. W. Cha. (1987). "A study on the effect of garlic to the heavy metal poisoning of rat". Journal of Korean Medical Science. 2 (4): 213-24. 10.3346/jkms.1987.2.4.213.

DOI: https://doi.org/10.3346/jkms.1987.2.4.213

[21] S. J. Flora, A. Mehta, and R. Gupta. (2009). "Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice". Chemico-Biological Interactions. 177 (3): 227-33. 10.1016/j.cbi.2008.08.017.

DOI: https://doi.org/10.1016/j.cbi.2008.08.017

[22] M. Marija, R. Zeljko, J. Vilma, and O. Zorana. (2004). "Population dynamics and Borrelia burgdorferi infection rate of ixodes ricinus ticks in the Belgrade area". Acta Veterinaria. 54 (2-3): 219-225. 10.2298/avb0403219m.

DOI: https://doi.org/10.2298/AVB0403219M

[23] H. T. Tung, F. W. Cook, R. D. Wyatt, and P. B. Hamilton. (1975). "The anemia caused by aflatoxin". Poultry Science. 54 (6): 1962-9. 10.3382/ps.0541962.

DOI: https://doi.org/10.3382/ps.0541962

[24] Y. Arfat, N. Mahmood, M. U. Tahir, M. Rashid, S. Anjum, F. Zhao, D. J. Li, Y. L. Sun, L. Hu, C. Zhihao, C. Yin, P. Shang, and A. R. Qian. (2014). "Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice". Toxicology Reports. 1 : 554-561. 10.1016/j.toxrep.2014.08.004.

DOI: https://doi.org/10.1016/j.toxrep.2014.08.004

[25] S. Mumtaz, S. Ali, R. Khan, H. A. Shakir, H. M. Tahir, S. Mumtaz, and S. Andleeb. (2020). "Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs". Environmental Science and Pollution Research. 27 (9): 8953-8964. 10.1007/s11356-020-07654-2.

DOI: https://doi.org/10.1007/s11356-020-07654-2

[26] F. M. El-Demerdash, M. I. Yousef, F. S. Kedwany, and H. H. Baghdadi. (2004). "Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: protective role of vitamin E and beta-carotene". Food and Chemical Toxicology. 42 (10): 1563-71. 10.1016/j.fct.2004.05.001.

DOI: https://doi.org/10.1016/j.fct.2004.05.001

Downloads

Published

2024-12-28

How to Cite

Das, B., Hossain, M. A., Islam, M. S., Zullhash, M. A., Talha, M. M. H., Munna, S. U., … Khan, A. U. (2024). Effect of The Garlic as Chelation Therapy in Reducing Lead and Cadmium Deposition on Suckling Mice. Bioactivities, 2(2), 130–140. https://doi.org/10.47352/bioactivities.2963-654X.240