Biosorption of Pd(II) from Aqueous Solution using Leaves of Moringa oleifera as a Low-cost Biosorbent

Authors

DOI:

https://doi.org/10.47352/bioactivities.2963-654X.181

Keywords:

biosorption, Moringa oleifera, FTIR, isotherm models, palladium removal

Abstract

Palladium ion (Pd(II)) is one of the hazardous metal pollutants commonly found in industrial effluents and poses severe environmental and human health impacts. The present study has chosen the leaves of Moringa oleifera (L-MO) as a potential biosorbent for removing Pd(II) from the aqueous solution. Various parameters such as pH, biosorbent dose, and initial Pd(II) concentration were optimized for maximum removal of Pd(II) using standard protocols. The Fourier-transform infrared spectroscopy study was performed to identify the functional groups involved in Pd(II) biosorption mechanism. The analysis of FTIR spectra confirmed the involvement of functional groups such as C–O, C=O, C–H, and O–H in the biosorption of Pd(II) on the surface of L-MO. The biosorption of Pd(II) was highest at pH 6. The sorption equilibrium data were well-fitted with the Langmuir isotherm model (R2 = 0.9896). The highest adsorption capacity of L-MO was 41.15 mg/g. It is concluded that the L-MO could be used as a potentially low-cost novel biosorbent to remove Pd(II) from contaminated water.

References

[1] S. Yadav, A. Yadav, N. Bagotia, A. K. Sharma, and S. Kumar. (2021). "Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater - A review". Journal of Water Process Engineering. 4210.1016/j.jwpe.2021.102148.

[2] R. Alfanaar, K. T. A. Priyangga, A. C. Imawan, J. Jumina, and Y. S. Kurniawan. (2022). "Effective Recovery of Palladium(II) Ions using Chitosan-Based Adsorbent Material". Journal of Multidisciplinary Applied Natural Science. 3 (1): 24-33. 10.47352/jmans.2774-3047.131.

[3] S. Mao and M. Gao. (2021). "Functional organoclays for removal of heavy metal ions from water: A review". Journal of Molecular Liquids. 334. 10.1016/j.molliq.2021.116143.

[4] T. Sato, S. Abe, S. Ito, and T. Abe. (2019). "Silk fibroin fiber for selective palladium adsorption: Kinetic, isothermal and thermodynamic properties". Journal of Environmental Chemical Engineering. 7 (2).10.1016/j.jece.2019.102958.

[5] J. Zhao, C. Wang, S. Wang, L. Zhang, and B. Zhang. (2019). "Augmenting the adsorption parameters of palladium onto pyromellitic acid-functionalized nanosilicas from aqueous solution". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 578. 10.1016/j.colsurfa.2019.123581.

[6] J. Feng, M. Xie, D. Xu, Z. Tang, C. He, S. Ning, M. Li, G. Yuan, and S. Jiang. (2022). "Preparation of metal-organic framework composite beads for selective adsorption and separation of palladium: Properties, mechanism and practical application". Separation and Purification Technology. 302. 10.1016/j.seppur.2022.122081.

[7] Y. Fei and Y. H. Hu. (2023). "Recent progress in removal of heavy metals from wastewater: A comprehensive review". Chemosphere. 335 : 139077. 10.1016/j.chemosphere.2023.139077.

[8] R. Shrestha, S. Ban, S. Devkota, S. Sharma, R. Joshi, A. P. Tiwari, H. Y. Kim, and M. K. Joshi. (2021). "Technological trends in heavy metals removal from industrial wastewater: A review". Journal of Environmental Chemical Engineering. 9 (4).  10.1016/j.jece.2021.105688.

[9] S. Nagireddi. (2022). "Effect of cetrimonium bromide (CTAB) surfactant on Pd(II) removal efficiency from electroless plating solutions". Materials Today: Proceedings. 68 : 830-835. 10.1016/j.matpr.2022.06.259.

[10] B. Keskin, A. Yuksekdag, B. Zeytuncu, and I. Koyuncu. (2023). "Development of polymer inclusion membranes for palladium recovery: Effect of base polymer, carriers, and plasticizers on structure and performance". Journal of Water Process Engineering. 52. 10.1016/j.jwpe.2023.103576.

[11] S. Zhang, S. Ning, H. Liu, X. Wang, Y. Wei, and X. Yin. (2021). "Preparation of ion-exchange resin via in-situ polymerization for highly selective separation and continuous removal of palladium from electroplating wastewater". Separation and Purification Technology. 258. 10.1016/j.seppur.2020.117670.

[12] T. C. Maponya, K. D. Modibane, T. R. Somo, and K. Makgopa. (2023). "Selective adsorption of palladium ions from wastewater by ion-imprinted MIL-101(Cr) derived from waste polyethylene terephthalate: Isotherms and kinetics". Separation and Purification Technology. 307. 10.1016/j.seppur.2022.122767.

[13] H. Jiang, S. Wu, and J. Zhou. (2023). "Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review". International Journal of Biological Macromolecules. 236 : 123916. 10.1016/j.ijbiomac.2023.123916.

[14] A. Thirunavukkarasu, R. Nithya, and R. Sivashankar. (2021). "Continuous fixed-bed biosorption process: A review". Chemical Engineering Journal Advances. 810.1016/j.ceja.2021.100188.

[15] H. I. Syeda, I. Sultan, K. S. Razavi, and P.-S. Yap. (2022). "Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review". Journal of Water Process Engineering. 4610.1016/j.jwpe.2021.102446.

[16] D. H. K. Reddy, D. K. V. Ramana, K. Seshaiah, and A. V. R. Reddy. (2011). "Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent". Desalination. 268 (1-3): 150-157. 10.1016/j.desal.2010.10.011.

[17] M. Abatal, M. T. Olguin, I. Anastopoulos, D. A. Giannakoudakis, E. C. Lima, J. Vargas, and C. Aguilar. (2021). "Comparison of Heavy Metals Removal from Aqueous Solution by Moringa oleifera Leaves and Seeds". Coatings. 11 (5).  10.3390/coatings11050508.

[18] J. C. Vaghetti, E. C. Lima, B. Royer, B. M. da Cunha, N. F. Cardoso, J. L. Brasil, and S. L. Dias. (2009). "Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions". Journal of Hazardous Materials. 162 (1): 270-80. 10.1016/j.jhazmat.2008.05.039.

[19] V. O. Njoku. (2014). "Biosorption potential of cocoa pod husk for the removal of Zn(II) from aqueous phase".Journal of Environmental Chemical Engineering. 2 (2): 881-887. 10.1016/j.jece.2014.03.003.

[20] E. Nakkeeran, C. Patra, T. Shahnaz, S. Rangabhashiyam, and N. Selvaraju. (2018). "Continuous biosorption assessment for the removal of hexavalent chromium from aqueous solutions using Strychnos nux vomica fruit shell". Bioresource Technology Reports. 3 : 256-260. 10.1016/j.biteb.2018.09.001.

[21] H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa. (2021). "Antioxidant and Antibacterial Activities of Magnesium Oxide Nanoparticles Prepared using Aqueous Extract of Moringa oleifera Bark as Green Agents". Journal of Multidisciplinary Applied Natural Science. 1 (1): 44-53. 10.47352/jmans.v1i1.9.

[22] A. Saleem, M. Saleem, M. F. Akhtar, M. M. F. Ashraf Baig, and A. Rasul. (2020). "HPLC analysis, cytotoxicity, and safety study of Moringa oleifera Lam. (wild type) leaf extract". Journal of Food Biochemistry. e13400. 10.1111/jfbc.13400.

[23] H. Amrulloh, Y. S. Kurniawan, C. Ichsan, J. Jelita, W. Simanjuntak, R. T. M. Situmeang, and P. A. Krisbiantoro. (2021). "Highly efficient removal of Pb(II) and Cd(II) ions using magnesium hydroxide nanostructure prepared from seawater bittern by electrochemical method". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 631. 10.1016/j.colsurfa.2021.127687.

[24] O. S. Bello, K. A. Adegoke, and O. O. Akinyunni. (2015). "Preparation and characterization of a novel adsorbent from Moringa oleifera leaf". Applied Water Science. 7 (3): 1295-1305. 10.1007/s13201-015-0345-4.

[25] S. Wierzba. (2015). "Biosorption of lead(II), zinc(II) and nickel(II) from industrial wastewater by Stenotrophomonas maltophilia and Bacillus subtilis". Polish Journal of Chemical Technology. 17 (1): 79-87. 10.1515/pjct-2015-0012.

[26] M. Imran, K. Anwar, M. Akram, G. M. Shah, I. Ahmad, N. Samad Shah, Z. U. H. Khan, M. I. Rashid, M. N. Akhtar, S. Ahmad, M. Nawaz, and R. J. Schotting. (2019). "Biosorption of Pb(II) from contaminated water onto Moringa oleifera biomass: kinetics and equilibrium studies". International Journal of Phytoremediation. 21 (8): 777-789. 10.1080/15226514.2019.1566880.

[27] R. Nadeem, Q. Manzoor, M. Iqbal, and J. Nisar. (2016). "Biosorption of Pb(II) onto immobilized and native Mangifera indica waste biomass". Journal of Industrial and Engineering Chemistry. 35 : 185-194. 10.1016/j.jiec.2015.12.030.

[28] D. H. Reddy, K. Seshaiah, A. V. Reddy, M. M. Rao, and M. C. Wang. (2010). "Biosorption of Pb2+ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies". Journal of Hazardous Materials. 174 (1-3): 831-8. 10.1016/j.jhazmat.2009.09.128.

[29] S. Gupta, D. Garg, and A. Kumar. (2022). "Cadmium biosorption using Aloe barbadensis Miller leaves waste powder treated with sodium bicarbonate". Cleaner Waste Systems. 3. 10.1016/j.clwas.2022.100032.

[30] N. Saman, N. A. Ahmad Kamal, J. W. P. Lye, and H. Mat. (2020). "Synthesis and characterization of CTAB-silica nanocapsules and its adsorption behavior towards Pd(II) ions in aqueous solution". Advanced Powder Technology.31 (8): 3205-3214. 10.1016/j.apt.2020.06.007.

[31] Z. Wang, X. Xu, S. Ma, H. Wang, H. Zhao, Y. Wang, S. Tong, Z. Su, W. Wang, and J. Bai. (2021). "The superior adsorption capacity of boron-nitrogen co-doping walnut shell biochar powder for Au(III), Pt(IV), and Pd(II)". Journal of Environmental Chemical Engineering. 9 (6). 10.1016/j.jece.2021.106288.

[32] B. C. Choudhary, D. Paul, A. U. Borse, and D. J. Garole. (2017). "Recovery of palladium from secondary waste using soluble tannins cross-linked Lagerstroemia speciosaleaves powder". Journal of Chemical Technology & Biotechnology. 92 (7): 1667-1677. 10.1002/jctb.5163.

[33] H. Sharififard, F. Zokaee Ashtiani, and M. Soleimani. (2013). "Adsorption of palladium and platinum from aqueous solutions by chitosan and activated carbon coated with chitosan". Asia-Pacific Journal of Chemical Engineering. 8 (3): 384-395. 10.1002/apj.1671.

[34] P. Ramakul, Y. Yanachawakul, N. Leepipatpiboon, and N. Sunsandee. (2012). "Biosorption of palladium(II) and platinum(IV) from aqueous solution using tannin from Indian almond (Terminalia catappa L.) leaf biomass: Kinetic and equilibrium studies". Chemical Engineering Journal. 193-194 : 102-111. 10.1016/j.cej.2012.04.035.

[35] A. Sari, D. Mendil, M. Tuzen, and M. Soylak. (2009). "Biosorption of palladium(II) from aqueous solution by moss (Racomitrium lanuginosum) biomass: Equilibrium, kinetic and thermodynamic studies". Journal of Hazardous Materials. 162 (2-3): 874-9. 10.1016/j.jhazmat.2008.05.112.

Downloads

Published

2023-06-26

How to Cite

Amorim, D., Costa, B., & Martinez, D. (2023). Biosorption of Pd(II) from Aqueous Solution using Leaves of Moringa oleifera as a Low-cost Biosorbent. Bioactivities, 1(1), 9-17. https://doi.org/10.47352/bioactivities.2963-654X.181