Green Synthesis of Silver Nanoparticles using Egyptian Date Palm (Phoenix dactylifera L.) Seeds and Their Antibacterial Activity Assessment




antibacterial, Phoenix dactylifera L., seed, silver nanoparticles


A simple, cost-effective and eco-friendly synthesis technique of silver nanoparticles (AgNPs) using the aqueous extracts of Egyptian date palm (Phoenix dactylifera L.) seeds and their antibacterial activity assessment have been conducted. Theaqueous extract was used as reducing and stabilizer agents in the synthesis of AgNPs. Characterization of AgNPs was done using different methods including ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), field emission-scanning electron microscope (FE-SEM), and X-ray diffraction (XRD). UV-Vis spectrum of the aqueous medium containing AgNPs showed an absorption peak at around 432 nm. FTIR spectra had shown that the biomolecules were responsible for the reduction and capping agents of AgNPs. XRD study showed the particles to be crystalline with a face-centered cubic (fcc) structure. The AgNPs exhibited significant anti-bacterial activity against Bacillus subtilis, Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. Overall, these findings suggest that biosynthesized AgNPs may be used as a potential therapeutic formulation against bacterial infections.


[1] D.-N. Phan, N. Dorjjugder, Y. Saito, G. Taguchi, H. Lee, J. S. Lee, and I.-S. Kim. (2019). "The mechanistic actions of different silver species at the surfaces of polyacrylonitrile nanofibers regarding antibacterial activities". Materials Today Communications. 21  10.1016/j.mtcomm.2019.100622.

[2] S. Saravanan, R. Kato, M. Balamurugan, S. Kaushik, and T. Soga. (2017). "Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles". Journal of Science: Advanced Materials and Devices. 2 (4): 418-424. 10.1016/j.jsamd.2017.10.004.

[3] A. Ahmad, Y. Wei, F. Syed, K. Tahir, A. U. Rehman, A. Khan, S. Ullah, and Q. Yuan. (2017). "The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles". Microbial Pathogenesis. 102 : 133-142. 10.1016/j.micpath.2016.11.030.

[4] T. Rasheed, M. Bilal, H. M. N. Iqbal, and C. Li. (2017). "Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications". Colloids and Surfaces B: Biointerfaces.158 : 408-415. 10.1016/j.colsurfb.2017.07.020.

[5] T. Shankar, P. Karthiga, K. Swarnalatha, and K. Rajkumar. (2017). "Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli". Resource-Efficient Technologies. 3 (3): 303-308. 10.1016/j.reffit.2017.01.004.

[6] K. R. Aadil, S. I. Mussatto, and H. Jha. (2018). "Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity". International Journal of Biological Macromolecules. 120 (Pt A): 763-767. 10.1016/j.ijbiomac.2018.08.109.

[7] S. Mathew, C. P. Victório, J. Sidhi M S, and B. T. B.H. (2020). "Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) W.T. Aiton and activity against pathogenic bacteria". Arabian Journal of Chemistry. 13(12): 9139-9144. 10.1016/j.arabjc.2020.10.038.

[8] C. V. Restrepo and C. C. Villa. (2021). "Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review". Environmental Nanotechnology, Monitoring & Management. 15. 10.1016/j.enmm.2021.100428.

[9] M. A. Kakakhel, W. Sajjad, F. Wu, N. Bibi, K. Shah, Z. Yali, and W. Wang. (2021). "Green synthesis of silver nanoparticles and their shortcomings, animal blood a potential source for silver nanoparticles: A review". Journal of Hazardous Materials Advances. 1  10.1016/j.hazadv.2021.100005.

[10] T. A. Jorge de Souza, L. R. Rosa Souza, and L. P. Franchi. (2019). "Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity". Ecotoxicology and Environmental Safety. 171 : 691-700. 10.1016/j.ecoenv.2018.12.095.

[11] I. Sk, M. A. Khan, A. Haque, S. Ghosh, D. Roy, S. Homechuadhuri, and M. A. Alam. (2020). "Synthesis of gold and silver nanoparticles using Malva verticillata leaves extract: Study of gold nanoparticles catalysed reduction of nitro-Schiff bases and antibacterial activities of silver nanoparticles". Current Research in Green and Sustainable Chemistry. 3. 10.1016/j.crgsc.2020.05.003.

[12] M. P. Patil, Y.-A. Seong, J.-O. Kim, Y. B. Seo, and G.-D. Kim. (2021). "Synthesis of silver nanoparticles using aqueous extract of Cuscuta japonica seeds and their antibacterial and antioxidant activities". Inorganic Chemistry Communications. 134  10.1016/j.inoche.2021.109035.

[13] F. Khuda, M. Jamil, A. Ali Khan Khalil, R. Ullah, N. Ullah, F. Naureen, M. Abbas, M. Shafiq Khan, S. Ali, H. Muhammad Umer Farooqi, and M.-J. Ahn. (2022). "Assessment of antioxidant and cytotoxic potential of silver nanoparticles synthesized from root extract of Reynoutria japonica Houtt". Arabian Journal of Chemistry. 15(12).  10.1016/j.arabjc.2022.104327.

[14] V. Uma Maheshwari Nallal, K. Prabha, I. VethaPotheher, B. Ravindran, A. Baazeem, S. W. Chang, G. A. Otunola, and M. Razia. (2021). "Sunlight-driven rapid and facile synthesis of Silver nanoparticles using Allium ampeloprasum extract with enhanced antioxidant and antifungal activity". Saudi Journal of Biological Sciences.28 (7): 3660-3668. 10.1016/j.sjbs.2021.05.001.

[15] S. Joseph and B. Mathew. (2015). "Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.136 : 1371-9. 10.1016/j.saa.2014.10.023.

[16] V. P. Veeraraghavan, N. D. Periadurai, T. Karunakaran, S. Hussain, K. M. Surapaneni, and X. Jiao. (2021). "Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929)". Saudi Journal of Biological Sciences. 28 (7): 3633-3640. 10.1016/j.sjbs.2021.05.007.

[17] L. D. Amarasinghe, P. Wickramarachchi, A. Aberathna, W. S. Sithara, and C. R. De Silva. (2020). "Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae)". Heliyon. 6 (6): e04322. 10.1016/j.heliyon.2020.e04322.

[18] J. Joseph, K. S. Deborah, R. Raghavi, A. M. Shamya, and W. Aruni. (2021). "Green synthesis of silver nanoparticles using Phyllanthus amarus Seeds and their antibacterial activity assessment". Biomedical and Biotechnology Research Journal. 5 (1): 35-38. 10.4103/bbrj.bbrj_139_20.

[19] A. Rautela, J. Rani, and M. Debnath. (2019). "Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms". Journal of Analytical Science and Technology. 10 (1).  10.1186/s40543-018-0163-z.

[20] P. Kanniah, P. Chelliah, J. R. Thangapandi, G. Gnanadhas, V. Mahendran, and M. Robert. (2021). "Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite". International Journal of Biological Macromolecules. 189 : 18-33. 10.1016/j.ijbiomac.2021.08.056.

[21] S. Shobana, S. Veena, S. S. M. Sameer, K. Swarnalakshmi, and L. A. Vishal. (2020). "Green Synthesis of Silver Nanoparticles Using Artocarpus hirsutus Seed Extract and its Antibacterial Activity". Current Pharmaceutical Biotechnology. 21 (10): 980-989. 10.2174/1389201021666200107115849.

[22] K. Chand, C. Jiao, M. N. Lakhan, A. H. Shah, V. Kumar, D. E. Fouad, M. B. Chandio, A. Ali Maitlo, M. Ahmed, and D. Cao. (2021). "Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella Sativa seed extract". Chemical Physics Letters. 763. 10.1016/j.cplett.2020.138218.

[23] M. I. Hussain, M. Farooq, and Q. A. Syed. (2020). "Nutritional and biological characteristics of the date palm fruit (Phoenix dactylifera L.) – A review". Food Bioscience. 34. 10.1016/j.fbio.2019.100509.

[24] J. Osamede Airouyuwa, H. Mostafa, A. Riaz, and S. Maqsood. (2022). "Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters". Ultrasonics Sonochemistry. 91 : 106233. 10.1016/j.ultsonch.2022.106233.

[25] S. Bhattacharjee, F. Habib, N. Darwish, and A. Shanableh. (2021). "Iron sulfide nanoparticles prepared using date seed extract: Green synthesis, characterization and potential application for removal of ciprofloxacin and chromium". Powder Technology. 380 : 219-228. 10.1016/j.powtec.2020.11.055.

[26] S. S. Dash, A. K. Sikder, B. G. Bag, and S. Bandyopadhyay. (2013). "Phoenix dactylifera (Date Palm) seed extract mediated green synthesis of gold nanoparticles and its application as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol". Journal Nanomaterial and Biostar. 3 : 42-46.

[27] K. S. Allemailem, H. Khadri, M. Azam, M. A. Khan, A. H. Rahmani, F. Alrumaihi, R. Khateef, M. A. Ansari, E. A. Alatawi, M. H. Alsugoor, N. M. Almansour, B. Y. Alhatlani, and A. Almatroudi. (2022). "Ajwa-Dates (Phoenix dactylifera)-Mediated Synthesis of Silver Nanoparticles and Their Anti-Bacterial, Anti-Biofilm, and Cytotoxic Potential". Applied Sciences. 12 (9).  10.3390/app12094537.

[28] M. A. Ansari and M. A. Alzohairy. (2018). "One-Pot Facile Green Synthesis of Silver Nanoparticles Using Seed Extract of Phoenix dactylifera and Their Bactericidal Potential against MRSA". Evidence-Based Complementary and Alternative Medicine. 2018 : 1860280. 10.1155/2018/1860280.

[29] S. Farhadi, B. Ajerloo, and A. Mohammadi. (2017). "Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities". Acta Chimica Slovenica. 64 (1): 129-143. 10.17344/acsi.2016.2956.

[30] K. Anandalakshmi, J. Venugobal, and V. Ramasamy. (2015). "Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity". Applied Nanoscience. 6 (3): 399-408. 10.1007/s13204-015-0449-z.




How to Cite

Abdel-Alim, M. E., Samaan, K., Guillaume, D., & Amla, H. (2023). Green Synthesis of Silver Nanoparticles using Egyptian Date Palm (Phoenix dactylifera L.) Seeds and Their Antibacterial Activity Assessment. Bioactivities, 1(1), 1-8.