Antioxidant and Antibacterial Activities of Magnesium Oxide Nanoparticles Prepared using Aqueous Extract of Moringa Oleifera Bark as Green Agents

Authors

DOI:

https://doi.org/10.47352/jmans.v1i1.9

Keywords:

antibacterial, antioxidant, bark extract, green synthesis, magnesium oxide nanoparticles

Abstract

In this research, Magnesium oxide nanoparticles (MgONPs) was prepared from MgCl2 solution using aqueous extract of M. oleifera bark as green agent. Preparation procedure involved mixing of MgCl2.6H2O solution and the aqueous extract of M. oleifera bark, followed by drop wise addition of NaOH solution. The formation of MgO nanoparticles in this synthesis was confirmed using UV-Vis absorption. The spherical crystal structure of MgO nanoparticle confirmed XRD analysis. The average particle size of the synthesized MgO nanoparticles measured between 60 - 100 nm using SEM and TEM images and PSA results. MgONPs synthesized showed good antioxidant activity and antibacterial activity against S. aureus, E. faecalis, E. coli, and S. dysenteriae bacteria. 

References

[1] L. Katata-Seru, T. Moremedi, O. S. Aremu, and I. Bahadur. (2018). “Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli”. Journal of Molecular Liquids. 256 : 296–304. 10.1016/j.molliq.2017.11.093.

[2] Y. Abdallah, S. O. Ogunyemi, A. Abdelazez, M. Zhang, X. Hong, E. Ibrahim, A. Hossain, H. Fouad, B. Li, and J. Chen. (2019). “The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae”. BioMed Research International. 2019 : 5620989. 10.1155/2019/5620989.

[3] G. Sharma, R. Soni, and N. D. Jasuja. (2017). “Phytoassisted synthesis of magnesium oxide nanoparticles with Swertia chirayaita”. Journal of Taibah University for Science. 11 (3): 471–477. 10.1016/j.jtusci.2016.09.004.

[4] G. Pal, P. Rai, and A. Pandey. (2019). in “A. K. Shukla and I. Siavash (ed) Green Synthesis, Characterization and Applications of Nanoparticles”. Elsevier Inc, Amsterdam. 10.1016/C2017-0-02526-0.

[5] B. Wang, X. Xiong, H. Ren, and Z. Huang. (2017). “Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation”. RSC Advances. 7 (69): 43464–43473. 10.1039/c7ra07553g.

[6] M. B. Gawande, P. S. Branco, K. Parghi, J. J. Shrikhande, R. K. Pandey, C. A. A. Ghumman, N. Bundaleski, O. M. N. D. Teodorod, and R. V. Jayaram. (2011). “Synthesis and characterization of versatile MgO-ZrO2 mixed metal oxide nanoparticles and their applications,” Catalysis Science & Technology. 1 (9): 1653–1664. 10.1039/c1cy00259g.

[7] J. Chen, M. Zhang, C. Pang, F. Xiang, M. Zhu, X. Ma, G. Chang, and W. Yin. (2020). “Hydrophilic Pd/MgO Nanosystem for the Highly Efficient Aqueous-Phase Catalysis of Suzuki-Miyaura Reactions”. Industrial & Engineering Chemistry Research. 59 (1): 81–87. 10.1021/acs.iecr.9b05248.

[8] V. Srivastava, Y. C. Sharma, and M. Sillanpää. (2015). “Green synthesis of magnesium oxide nanoflower and its application for the removal of divalent metallic species from synthetic wastewater”. Ceramics International. 41 (5): 6702–6709. 10.1016/j.ceramint.2015.01.112.

[9] Z. Camtakan, S. Erenturk, and S. Yusan. (2012). “Magnesium oxide nanoparticles: Preparation, characterization, and uranium sorption properties,” Environmental Progress & Sustainable Energy. 31 (4): 536–543. 10.1002/ep.10575.

[10] A. A. Pilarska, Ł. Klapiszewski, and T. Jesionowski. (2017). “Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review”. Powder Technology. 319 : 373–407. 10.1016/j.powtec.2017.07.009.

[11] H. R. Raveesha, S.Nayana, D. R. Vasudha, J. P. S. Begum, S. Pratibha, C. R. Ravikumara, N. Dhananjaya. (2019). “The electrochemical behavior, antifungal and cytotoxic activities of phytofabricated MgO nanoparticles using Withania somnifera leaf extract”. Journal of Science: Advanced Materials and Devices. 4 (1): 57–65. 10.1016/j.jsamd.2019.01.003.

[12] K. Kandiah, T. Jeevanantham, and B. Ramasamy. (2019). “Reliability of antioxidant potential and in vivo compatibility with extremophilic actinobacterial-mediated magnesium oxide nanoparticle synthesis”. Artificial Cells, Nanomedicine, and Biotechnology. 47 (1): 862–872. 10.1080/21691401.2019.1580287.

[13] A. M. Azzam, M. A. Shenashen, B. B. Mostafa, W. A. Kandeel, and S. A. El-Safty. (2019). “Antibacterial Activity of Magnesium Oxide Nano-hexagonal Sheets for Wastewater Remediation”. Environmental Progress & Sustainable Energy. 38 (s1): S260–S266. 10.1002/ep.12999.

[14] M. Suma, G. N. Sushma, M. Zikriya, and Y. F. Nadaf. (2020). “Photocatalytic and antibacterial approach of green synthesised MgO nanoparticles”. 3rd International Conference on Condensed Matter and Applied Physics. 2220 : 020072. 10.1063/5.0002154.

[15] S. C. De La Rosa-García, P. Martínez-Torres, S. Gómez-Cornelio, M. A. Corral-Aguado, P. Quintana, and N. M. Gómez-Ortíz. (2018). “Antifungal activity of ZnO and MgO nanomaterials and their mixtures against colletotrichum gloeosporioides strains from tropical fruit”. Journal of Nanomaterials. 2018. 10.1155/2018/3498527.

[16] B. Mangalampalli, N. Dumala, and P. Grover. (2019). “Toxicity assessment of magnesium oxide nano and microparticles on cancer and non-cancer cell lines”. The Nucleus. 62 (3): 227–241. 10.1007/s13237-019-00298-9.

[17] A. F. A. Razis, M. D. Ibrahim, and S. B. Kntayya. (2014). “Health benefits of Moringa oleifera”. Asian Pacific Journal of Cancer Prevention. 15 (20): 8571–8576. 10.7314/APJCP.2014.15.20.8571.

[18] K. Anand, C. Tiloke, A. Phulukdaree, B. Ranjan, A. Chuturgoon, S. Singh, R. M. Gengan. (2016). “Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties”. Journal of Photochemistry and Photobiology B: Biology. 165 : 87–95. 10.1016/j.jphotobiol.2016.09.039.

[19] M. R. Bindhu, M. Umadevi, G. A. Esmail, N. A. Al-Dhabi, and M. V. Arasu. (2020). “Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties”. Journal of Photochemistry and Photobiology B: Biology. 205. 10.1016/j.jphotobiol.2020.111836.

[20] M. Sundrarajan, S. Jegatheeswaran, S. Selvam, N. Sanjeevi, and M. Balaji. (2015). “The ionic liquid assisted green synthesis of hydroxyapatite nanoplates by Moringa oleifera flower extract: A biomimetic approach”. Materials & Design. 88 : 1183–1190. 10.1016/j.matdes.2015.09.051.

[21] J. S. Moodley, S. B. N. Krishna, K. Pillay, Sershen, and P. Govender. (2018). “Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential”. Advances in Natural Sciences: Nanoscience and Nanotechnology. 9 (1): 015011. 10.1088/2043-6254/aaabb2.

[22] K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, and S. Ashokkumar. (2015). “Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity”. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 143 : 158–164. 10.1016/j.saa.2015.02.011.

[23] V. Sivaranjani and P. Philominathan. (2016). “Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity”. Wound Medicine. 12 : 1–5. 10.1016/j.wndm.2015.11.002.

[24] A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy. (2016). “Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells”. Journal of Photochemistry and Photobiology B: Biology. 164 : 352–360. 10.1016/j.jphotobiol.2016.10.003.

[25] H. P. N. Sholapur and B. M. Patil. (2013). “Pharmacognostic and phytochemical investigations on the bark of Moringa oleifera Lam.”. Indian Journal of Natural Products and Resources. 4 (1): 96–101.

[26] C. Tiloke and A. A. Chuturgoon. In “V. C. Kalia and A. K. Saini (eds) Engineering for Bioactive Compounds: Strategies and Processes”. Springer Singapore, Singapore.

[27] R. Magesh, R. M. Poorani, V. Karthikeyan, K. Sivakumar, and C. Mohanapriya. (2015). “Proportionate phytochemical screening and assessment of antioxidant potency on selected species of lamiaceae family”. International Journal of Pharmacognosy and Phytochemical Research. 7 (5): 1066–1072.

[28] B. Das, S. Moumita, S. Ghosh, M. I. Khan, D. Indira, R. Jayabalan, S. K.Tripathy, A. Mishra, and P. Balasubramanian. (2018). “Biosynthesis of magnesium oxide (MgO) nanoflakes by using leaf extract of Bauhinia purpurea and evaluation of its antibacterial property against Staphylococcus aureus”. Materials Science and Engineering: C. 91 : 436–444. 10.1016/j.msec.2018.05.059.

[29] P. E. Das, A. F. Majdalawieh, I. A. Abu-Yousef, S. Narasimhan, and P. Poltronieri. (2020). “Use of a hydroalcoholic extract of moringa oleifera leaves for the green synthesis of bismuth nanoparticles and evaluation of their anti-microbial and antioxidant activities,” Materials. 13 (4). 10.3390/ma13040876.

[30] P. Siddhuraju and K. Becker. (2003). “Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves”. Journal of Agricultural and Food Chemistry. 51 (8): 2144–2155. 10.1021/jf020444+.

[31] S. Mohammed and F. A. Manan. (2015). “Analysis of total phenolics , tannins and flavonoids from Moringa oleifera seed extract”. Journal of Chemical and Pharmaceutical Research. 7 (1): 132–135.

[32] M. O. Okumu, J. M. Mbaria, L. W. Kanja, D. W. Gakuya, S. G. Kiama, and F. O. Ochola. (2016). “Phytochemical profile and antioxidant capacity of leaves of Moringa oleifera ( Lam ) extracted using different solvent systems”. Journal of Pharmacognosy and Phytochemistry. 5 (4): 302–308.

[33] H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa. (2021). “Bioactivities of Nano-scale Magnesium Oxide Prepared Using Aqueous Extract of Moringa Oleifera Leaves as Green Agent”. Advances in Natural Sciences: Nanoscience and Nanotechnology.

[34] M. Hariram, S. Vivekanandhan, V. Ganesan, S. Muthuramkumar, A. Rodriguez-uribe, A. K. Mohanty, M. Misra. (2019). “Tecoma stans flower extract assisted biogenic synthesis of functional Ag-Talc nanostructures for antimicrobial applications”. Bioresource Technology Reports. 7. 10.1016/j.biteb.2019.100298.

[35] D. T. C. Nguyen, H. H. Dang, D. V. N. Vo, L. G. Bach, T. D. Nguyen, and T. Van Tran. (2021). “Biogenic synthesis of MgO nanoparticles from different extracts (flower, bark, leaf) of Tecoma stans (L.) and their utilization in selected organic dyes treatment”. Journal of Hazardous Materials. 404. 10.1016/j.jhazmat.2020.124146.

[36] E. R. Essien, V. N. Atasie, E. U. Udobang, and G. Umanu. (2019). “Preparation of monodispersed and cytotoxic silver nanoparticles using Launaea taraxacifolia leaf extract”. Journal of Nanostructure in Chemistry. 9 (4): 259–268. 10.1007/s40097-019-00316-x.

[37] S. Dewanjee, M. Gangopadhyay, N. Bhattacharya, R. Khanra, and T. K. Dua. (2015). “Bioautography and its scope in the field of natural product chemistry”. Journal of Pharmaceutical Analysis. 5 (2): 75–84. 10.1016/j.jpha.2014.06.002.

[38] T. Safawo, B. V. Sandeep, S. Pola, and A. Tadesse. (2018). “Synthesis and characterization of zinc oxide nanoparticles using tuber extract of anchote (Coccinia abyssinica (Lam.) Cong.) for antimicrobial and antioxidant activity assessment”. OpenNano. 3 : 56–63. 10.1016/j.onano.2018.08.001.

[39] R. Dobrucka. (2018). “Antioxidant and Catalytic Activity of Biosynthesized CuO Nanoparticles Using Extract of Galeopsidis herba”. Jounal of Inorganic and Organometallic Polymers and Materials. 28 (3): 812–819. 10.1007/s10904-017-0750-2.

[40] K. Z. Khor, V. Lim, E. J. Moses, and N. Abdul Samad. (2018). “The in Vitro and in Vivo Anticancer Properties of Moringa oleifera”. Evidence-based Complementary and Alternative Medicine. 2018. 10.1155/2018/1071243.

[41] N. Y. T. Nguyen, N. Grelling, C. L. Wetteland, R. Rosario, and H. Liu. (2018). “Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (nMgO) against Pathogenic Bacteria, Yeasts, and Biofilms”. Scientific Reports. 8 (1). 10.1038/s41598-018-34567-5.

Downloads

Published

2021-01-30

How to Cite

[1]
H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa, “Antioxidant and Antibacterial Activities of Magnesium Oxide Nanoparticles Prepared using Aqueous Extract of Moringa Oleifera Bark as Green Agents”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 44-53, Jan. 2021.