Utilization of Banana (Musa sapientum) Peel for Removal of Pb2+ from Aqueous Solution

Authors

  • Afrida Nurain Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342 (Bangladesh)
  • Protima Sarker Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali-3814 (Bangladesh); School of Environmental Science, University of Shiga Prefecture, Shiga-5228533 (Japan)
  • Md. Shiblur Rahaman Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali-3814 (Bangladesh); Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Tochigi-3290498 (Japan) http://orcid.org/0000-0002-9920-4809
  • Md. Mostafizur Rahman Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342 (Bangladesh)
  • Md. Khabir Uddin Department of Environmental Sciences, Jahangirnagar University, Dhaka-1342 (Bangladesh)

DOI:

https://doi.org/10.47352/jmans.v1i2.89

Keywords:

adsorption, Langmuir isotherm, Freundlich isotherm, separation factor, heavy metal remediation

Abstract

Biosorption is a convenient process for heavy metal remediation. In this study, banana peel was experimented to eliminate lead (Pb2+) from an aqueous solution following batch experiments. The functional groups of banana peel were identified by Fourier-transform infrared spectroscopy (FTIR). The adsorption mechanism was studied by the Langmuir and Freundlich adsorption isotherm model and determined the separation factor from the Langmuir adsorption isotherm. The adsorption of Pb2+ on dried banana peel had been studied at different adsorbent doses, pH, initial concentration of Pb, contact time, temperature, and agitation speed. After adsorption, Pb2+ was measured using atomic absorption spectroscopy (AAS). Maximum adsorption had taken place at pH 5 for adsorbent dose 45 g L-1. The optimum contact time and agitation speed was 30 minutes and 150 rpm, respectively for the initial Pb concentration of 100 ppm at 25°C. Both, Langmuir and Freundlich adsorption isotherm models shows the best fitting (r2 = 0.9978 and 0.9595) for Pb2+ adsorption. The maximum Pb2+ adsorption capacity was 2.1 mg g-1. The findings indicate that the banana peel waste could be a potential adsorbent for heavy metal removal. Moreover, the waste management problem could be solved in an eco-friendly manner by utilizing it for the eradication of Pb2+ from wastewater.

References

[1] L. Joseph, B. M. Jun, J. R. V. Flora, C. M. Park, and Y. Yoon. (2019). “Removal of heavy metals from water sources in the developing world using low-cost materials: A review”. Chemosphere. 229 : 142–159. 10.1016/j.chemosphere.2019.04.198.

[2] M. M. Islam, M. R. Karim, X. Zheng, and X. Li. (2018). “Heavy metal and metalloid pollution of soil, water and foods in Bangladesh: A critical review”. International Journal of Environmental Research and Public Health. 15 (12): 2825. 10.3390/ijerph15122825.

[3] W. Ding, X. Dong, I. M. Ime, B. Gao, and L. Q. Ma. (2014). “Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars”. Chemosphere. 105 : 68–74. 10.1016/j.chemosphere.2013.12.042.

[4] World Health Organization. (2017). “Guidelines for drinking-water quality. Fourth Edition-Incorporating the First Addendum”.  World Health Organization.

[5] S. S. Ahluwalia and D. Goyal. (2007). “Microbial and plant derived biomass for removal of heavy metals from wastewater”. Bioresource Technology. 98 (12): 2243–2257. 10.1016/j.biortech.2005.12.006.

[6] M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. R. Qtaishat, and M. Alkasrawi. (2015). “Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance”. Chemical Engineering Journal. 260 : 749–756. 10.1016/j.cej.2014.09.035.

[7] M. A. Barakat. (2011). “New trends in removing heavy metals from industrial wastewater”. Arabian Journal of Chemistry. 4 (4): 361–377. 10.1016/j.arabjc.2010.07.019.

[8] T. A. Elbana, H. Magdi Selim, N. Akrami, A. Newman, S. M. Shaheen, and J. Rinklebe. (2018). “Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics”. Geoderma. 324 : 80–88. 10.1016/j.geoderma.2018.03.019.

[9] L. Deng, Y. Su, H. Su, X. Wang, and X. Zhu. (2007). “Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis”. Journal of Hazardous Materials. 143 (1–2): 220–225. 10.1016/j.jhazmat.2006.09.009.

[10] H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu. (2012). “Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar”. Water Research.  46 (3): 854–862. 10.1016/j.watres.2011.11.058.

[11] M. Thirumavalavan, Y. L. Lai, L. C. Lin, and J. F. Lee. (2010). “Cellulose-based native and surface modified fruit peels for the adsorption of heavy metal ions from aqueous solution: Langmuir adsorption isotherms”. Journal of Chemical & Engineering Data. 55 (3): 1186–1192. 10.1021/je900585t.

[12] G. N. Paranavithana. (2016). “Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil”. Environmental Earth Sciences. 75 (6). 10.1007/s12665-015-5167-z.

[13] S. Mireles, J. Parsons, T. Trad, C. L. Cheng, and J. Kang. (2019). “Lead removal from aqueous solutions using biochars derived from corn stover, orange peel, and pistachio shell”. International Journal of Environmental Science and Technology. 16 (10): 5817–5826. 10.1007/s13762-018-02191-5.

[14] Q. Li, J. Zhai, W. Zhang, M. Wang, and J. Zhou. (2007). “Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk”. Journal of Hazardous Materials. 141 (1): 163–167. 10.1016/j.jhazmat.2006.06.109.

[15] K. K. Krishnani, X. Meng, C. Christodoulatos, and V. M. Boddu. (2008). “Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk”. Journal of Hazardous Materials. 153 (3): 1222–1234. 10.1016/j.jhazmat.2007.09.113.

[16] A. Ahsan, M. Alamgir, M. M. El-Sergany, S. Shams, M. K. Rowshon, and N. N. N. Daud. (2014) “Assessment of municipal solid waste management system in a developing country”. Chinese Journal of Engineering. 2014 : 1–11. 10.1155/2014/561935.

[17] M. A. Abedin and M. Jahiruddin. (2015). “Waste generation and management in Bangladesh: an overview”. Asian Journal of Medical and Biological Research. 1 (1): 114–120. 10.3329/ajmbr.v1i1.25507.

[18] J. Anwar, U. Shafique, Waheed-uz-Zaman, M. Salman, A. Dar, and S. Anwar. (2010). “Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana”. Bioresource Technology. 101 (6): 1752–1755. 10.1016/j.biortech.2009.10.021.

[19] B. C. Sarker,   H. Ahmed,  R. Fancy,  S. K. Bhadhury, and  Z. Anika. (2020). “Comparison of chemical and nutritional values of extracted pectin from selected local banana cultivars of Bangladesh”. Asian Journal of Advances in Agricultural Research. 14 (2): 9–17. 10.9734/ajaar/2020/v14i230126.

[20] J. Q. Albarelli, R. B. Rabelo, D. T. Santos, M. M. Beppu, and M. A. A. Meireles. (2011). “Effects of supercritical carbon dioxide on waste banana peels for heavy metal removal”. The Journal of Supercritical Fluids. 58 (3): 343–351. 10.1016/j.supflu.2011.07.014.

[21] C. R. Silva, T. F. Gomes, G. C. R. M. Andrade, S. H. Monteiro, A. C. R. Dias, E. A. G. Zagatto, and V. L. Tornisielo. (2013). “Banana peel as an adsorbent for removing atrazine and ametryne from waters”. Journal of Agricultural and Food Chemistry. 61 (10): 2358–2363. 10.1021/jf304742h.

[22] G. Annadurai, R. S. Juang, and D. J. Lee. (2003). “Adsorption of Heavy Metals From Water Using Banana and Orange Peels”. Water Science and Technology. 47 (1): 185-90.

[23] R. Mohd Salim, A. J. Khan Chowdhury, R. Rayathulhan, K. Yunus, and M. Z. I. Sarkar. (2016). “Biosorption of Pb and Cu from aqueous solution using banana peel powder”. Desalination and Water Treatment. 57 (1): 303–314. 10.1080/19443994.2015.1091613.

[24] M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, and L. Mandi. (2009). “Low cost biosorbent ‘banana peel’ for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies”. Journal of Hazardous Materials. 166 (1): 117–125. 10.1016/j.jhazmat.2008.11.036.

[25] A. O. Dada, A. P. Olalekan, A. M. Olatunya, O. Dada. (2012). “Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk”. IOSR Journal of Applied Chemistry. 3 (1):  38–45. 10.9790/5736-0313845.

[26] Y. Zhao, Y. Yang, S. Yang, Q. Wang, C. Feng, and Z. Zhang. (2013). “Adsorption of high ammonium nitrogen from wastewater using a novel ceramic adsorbent and the evaluation of the ammonium-adsorbed-ceramic as fertilizer”. Journal of Colloid and Interface Science. 393 (1): 264–270. 10.1016/j.jcis.2012.10.028.

[27] C. A. Coles and R. N. Yong. (2006). “Use of equilibrium and initial metal concentrations in determining Freundlich isotherms for soils and sediments”. Engineering Geology. 85 (1–2): 19–25. 10.1016/j.enggeo.2005.09.023.

[28] E. Voudrias, K. Fytianos, and E. Bozani. (2018). “Sorption-desorption isotherms of dyes from aqueous solutions and wastewaters with different sorbent meterials”. Global NEST Journal. 4 (19): 75–83. 10.30955/gnj.000233.

[29] S. V. Mohan,  and J. Karthikeyan. (1997). “Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal”. Environmental Pollution. 97 (1-2): 183–187. 10.1016/S0269-7491(97)00025-0.

[30] V. J. P. Poots, G. McKay, and J. J. Healy. (1978). “Removal of basic dye from effluent using wood as an adsorbent”. Water Pollution Control Federation. 50 (5): 926–935.

[31] M. A. Ashraf, A. Wajid, K. Mahmood, M. J. Maah, and I. Yusoff. (2011). “Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals”. Scientific Research and Essays. 6 (19): 4055–4064. 10.5897/sre11.303.

[32] M. Horsfall and A. I. Spiff. (2005). “Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (wild cocoyam) biomass”. Electronic Journal of Biotechnology. 8 (2): 162–169. 10.2225/vol8-issue2-fulltext-4.

[33] D. Mohapatra, S. Mishra, and N. Sutar. (2010). “Banana and its by-product utilisation: An overview”. Journal of Scientific & Industrial Research. 69 (5): 323–329,.

[34] L. D. S. Yadav. (2005). “Introduction to spectroscopy (spectrometry)”. Springer, Dordrecht. 10.1007/978-1-4020-2575-4_1.

[35] R. S. D. Castro, L. Caetano, G. Ferreira, P. M. Padilha, M. J. Saeki, L. F. Zara, M. A. U. Martines, and G. R. Castro. (2011). “Banana Peel applied to the solid phase extraction of copper and lead from river water: Preconcentration of metal ions with a fruit waste”. Industrial & Engineering Chemistry Research. 50 (6): 3446–3451. 10.1021/ie101499e.

[36] J. R. Memon, S. Q. Memon, M. I. Bhanger, G. Z. Memon, A. El-Turki, and G. C. Allen. (2008). “Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal”. Colloids Surfaces B Biointerfaces. 66 (2): 260–265. 10.1016/j.colsurfb.2008.07.001.

[37] A. Bankar, B. Joshi, A. Ravi Kumar, and S. Zinjarde. (2010) .“Banana peel extract mediated synthesis of gold nanoparticles”. Colloids Surfaces B Biointerfaces. 80 (1): 45–50. 10.1016/j.colsurfb.2010.05.029.

[38] T. A. H. Nguyen, H. H. Ngo, W. S. Guo, J. Zhang, S. Liang, Q. Y. Yue, Q. Li, and T. V. Nguyen. (2013). “Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater”. Bioresource Technology. 148 : 574–585. 10.1016/j.biortech.2013.08.124.

[39] T. Í. S. Oliveira,  M. F. Rosa, F. L. Cavalcante, P. H. F. Pereira, G. K. Moates, N. Wellner, S. E. Mazzetto, K. W. Waldron, and H. M. C. Azeredo. (2016). “Optimization of pectin extraction from banana peels with citric acid by using response surface methodology”. Food Chemistry. 198 : 113–118. 10.1016/j.foodchem.2015.08.080.

[40] S. Schiewer and A. Balaria. (2009). “Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism”. Chemical Engineering Journal. 146 (2): 211–219. 10.1016/j.cej.2008.05.034.

[41] S. Karthikeyan, R. Balasubramanian, and C. S. P. Iyer. (2007). “Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions”. Bioresource Technology. 98 (2): 452–455. 10.1016/j.biortech.2006.01.010.

[42] S. Wang and Y. Peng. (2010). “Natural zeolites as effective adsorbents in water and wastewater treatment”. Chemical Engineering Journal. 156 (1): 11–24. 10.1016/j.cej.2009.10.029.

[43] S. Erentürk and E. Malko. (2007). “Removal of lead(II) by adsorption onto Viscum album L.: Effect of temperature and equilibrium isotherm analyses”. Applied Surface Science. 253 (10): 4727–4733. 10.1016/j.apsusc.2006.10.042.

[44] M. Sekar, V. Sakthi, and S. Rengaraj. (2004). “Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell”. Journal of Colloid and Interface Science. 279 (2): 307–313. 10.1016/j.jcis.2004.06.042.

[45] V. Singh, S. Tiwari, A. K. Sharma, and R. Sanghi. (2007). “Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate)”. Journal of Colloid and Interface Science. 316 (2): 224–232. 10.1016/j.jcis.2007.07.061.

[46] N. Y. Mezenner and A. Bensmaili. (2009). “Kinetics and therodynamic study of phosphate adsorption on iron hydroxide-eggshell waste” Chemical Engineering Journal. 147 (2–3): 87–96. 10.1016/j.cej.2008.06.024.

[47] J. R. Memon, S. Q. Memon, M. I. Bhanger, A. El-Turki, K. R. Hallam, and G. C. Allen. (2009). “Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater”. Colloids Surfaces B Biointerfaces. 70 (2): 232–237. 10.1016/j.colsurfb.2008.12.032.

[48] M. N. Sahmoune, K. Louhab, and A. Boukhiar. (2011). “Advanced biosorbents materials for removal of chromium from water and wastewaters”. Environmental Progress & Sustainable Energy. 30 (3): 284–293. 10.1002/ep.10473.

Downloads

Published

2021-07-31

How to Cite

[1]
A. Nurain, P. Sarker, M. S. Rahaman, M. M. Rahman, and M. K. Uddin, “Utilization of Banana (Musa sapientum) Peel for Removal of Pb2+ from Aqueous Solution”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 2, pp. 117-128, Jul. 2021.