Biomass and Carbon Stock Variation along slopes in Tropical Forest of Nepal: A case of Depard Community Forest, Makwanpur, Nepal




biomass, carbon stock, climate change, community forestry


This study was conducted to assess biomass and carbon stock along slopes in Depard community forest, Manahari-6, Makwanpur district of Nepal. In Nepal, carbon stock estimation has been less practiced in community forest. A random sampling method was applied in this study to collect biophysical data i.e. DBH and height by non-destructive method to estimate the quantity of tree biomass and carbon stock. 21 sample plots with 1% sampling intensity were established within the study area. The circular area of 250 m2 was predetermined with the radius of 8.92 m for this study. Secondary data were collected through published and unpublished literature. Data were pooled and analyzed with SPSS software. The total biomass and carbon stock were calculated to be 1381.30 t/ha and 649.21 t/ha, respectively. The biomass and carbon stock were highest (563.12 t/ha and 242.42 t/ha) in 0-5% slope, and lowest in >20% of slope (334.75 t/ha and 143.60 t/ha). The difference of biomass and carbon in slopes may be due to the accumulation of more organic matter and other minerals in the less sloped areas through rainfall, landslide.


[1] K. Panagiotopoulos, J. Holtvoeth, K. Kouli, E. Marinova, and A. Francke. (2020). “Insights into the evolution of the young Lake Ohrid ecosystem and vegetation succession from a southern European refugium during the Early Pleistocene”. Quaternary Science Reviews. 227 : 106044. 10.1016/j.quascirev.2019.106044.

[2] L. Huang, M. Zhou, J. Lv., and K. Chen. (2020). “Trends in global research in forest carbon sequestration: A bibliometric analysis”. Journal of Cleaner Production. 252 : 119908. 10.1016/j.jclepro.2019.119908.

[3] I. E. Olorunfemi, A. A. Komolafe, J. T. Fasinmirin, and A. A. Olufayo. (2019). “Biomass carbon stocks of different land use management in the forest vegetative zone of Nigeria”. Acta Oecologica. 95 : 45–56. 10.1016/j.actao.2019.01.004.

[4] S. Liu, H. Shen, X. Zhao, L. Zhou, H. Li, L. Xu, A. Xing, and J. Fang. (2019). “Estimation of plot-level soil carbon stocks in China’s forests using intensive soil sampling”. Geoderma. 348 : 107–114. 10.1016/j.geoderma.2019.04.029.

[5] A. Poudel, N. Sasaki, and I. Abe. (2020). “Assessment of carbon stocks in oak forests along the altitudinal gradient: A case study in the Panchase Conservation Area in Nepal”. Global Ecology and Conservation. 23 : e01171. 10.1016/j.gecco.2020.e01171.

[6] Y. K. Bredin, C. A. Peres, and T. Haugaasen. (2020). “Forest type affects the capacity of Amazonian tree species to store carbon as woody biomass”. Forest Ecology and Management. 473 : 118297. 10.1016/j.foreco.2020.118297.

[7] G. N. Madapuri, H. N. Azwar, and M. A. Hasyim. (2021). “Estimation of CO2 Absorption, Biomass, and Carbon Deposit the Trees on the Street City of Malang”. Journal of Multidisciplinary Applied Natural Science. 1 (1): 18–24. 10.47352/jmans.v1i1.5.

[8] S. Brown and A. E. Lugo. (1984). “Biomass of Tropical Forests: A New Estimate Based on Forest Volumes”. Science. 223 (4642) : 1290–1293. 10.1126/science.223.4642.1290.

[9] M. A. Sheikh, M. Kumar, N. P. Todaria, and R. Pandey. (2020). “Biomass and soil carbon along altitudinal gradients in temperate Cedrus deodara forests in Central Himalaya, India: Implications for climate change mitigation”. Ecological Indicators. 111 : 106025. 10.1016/j.ecolind.2019.106025.

[10] G. A. Alexandrov. (2007). “Carbon stock growth in a forest stand: the power of age”. Carbon Balance and Management. 2 (1): 4. 10.1186/1750-0680-2-4.

[11] B. Banik, D. Deb, S. Deb, and B. K. Datta. (2018). “Assessment of Biomass and Carbon Stock in Sal (Shorea robusta Gaertn.) Forests under Two Management Regimes in Tripura, Northeast India”. Journal of Forest and Environmental Science. 34 (3): 209–223. 10.7747/JFES.2018.34.3.209.

[12] A. Dey, M. Islam, and K. M. Masum. (2014). “Above Ground Carbon Stock Through Palm Tree in the Homegarden of Sylhet City in Bangladesh”. Journal of Forest and Environmental Science. 30 (3): 293–300. 10.7747/JFS.2014.30.3.293.

[13] M. Barrette, N. Thiffault, and I. Auger. (2021). “Resilience of natural forests can jeopardize or enhance plantation productivity”. Forest Ecology and Management. 482 : 118872. 10.1016/j.foreco.2020.118872.

[14] X. Su, S. Li, X. Wan, Z. Huang, B. Liu, S. Fu, P. Kumar, and Y. H. Chen. (2021). “Understory vegetation dynamics of Chinese fir plantations and natural secondary forests in subtropical China”. Forest Ecology and Management. 483 : 118750. 10.1016/j.foreco.2020.118750.

[15] J. Czerepko, R. Gawryś, R. Szymczyk, W. Pisarek, M. Janek, A. Haidt, A. Kowalewska, A. Piegdoń, A. Stebel, M. Kukwa, and C. Cacciatori. (2021). “How sensitive are epiphytic and epixylic cryptogams as indicators of forest naturalness? Testing bryophyte and lichen predictive power in stands under different management regimes in the Białowieża forest”. Ecological Indicators. 125 : 107532. 10.1016/j.ecolind.2021.107532.

[16] R. Baishya and S. K. Barik. (2011). “Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India”. Annals of Forest Science. 68 (4): 727–736. 10.1007/s13595-011-0089-8.

[17] K. Liu, M. Bandara, C. Hamel, J. D. Knight, and Y. Gan. (2020). “Intensifying crop rotations with pulse crops enhances system productivity and soil organic carbon in semi-arid environments”. Field Crops Research. 248 : 107657. 10.1016/j.fcr.2019.107657.

[18] M. Peichl and M. A. Arain. (2006). “Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests”. Agricultural and Forest Meteorology. 140 (4): 51–63. 10.1016/j.agrformet.2006.08.004.

[19] A. R. Taylor, J. R. Wang, and H. Y. H. Chen. (2007). “Carbon storage in a chronosequence of red spruce ( Picea rubens ) forests in central Nova Scotia, Canada”. Canadian Journal of Forest Research. 37 (11): 2260–2269. 10.1139/X07-080.

[20] M. Shahid and S. P. Joshi. (2018). “Carbon Stock Variation in Different Forest Types of Western Himalaya, Uttarakhand”. Journal of Forest and Environmental Science. 34 (2): 145–152. 10.7747/JFES.2018.34.2.145.

[21] C. Gong, Q. Tan, G. Liu, and M. Xu. (2021). “Forest thinning increases soil carbon stocks in China”. Forest Ecology and Management. 482 : 118812. 10.1016/j.foreco.2020.118812.

[22] M. Justine, W. Yang, F. Wu, B. Tan, M. Khan, and Y. Zhao. (2015). “Biomass Stock and Carbon Sequestration in a Chronosequence of Pinus massoniana Plantations in the Upper Reaches of the Yangtze River”. Forests. 6 (12): 3665–3682. 10.3390/f6103665.

[23] F. Turchetto, M. M. Araujo, L. A. Tabaldi, A. M. Griebeler, D. G. Rorato, A. L. P. Berghetti, F. M. Barbosa, M. S. de Lima, C. Costella, and V. M. Sasso. (2020). “Intensive silvicultural practices drive the forest restoration in southern Brazil”. Forest Ecology and Management. 473 : 118325. 10.1016/j.foreco.2020.118325.

[24] A. Baral. (2004). “Trees for carbon sequestration or fossil fuel substitution: the issue of cost vs. carbon benefit”. Biomass and Bioenergy. 27 (1): 41–55. 10.1016/j.biombioe.2003.11.004.

[25] B. H. J. De Jong, S. Ochoa-Gaona, M. A. Castillo-Santiago, N. Ramírez-Marcial, and M. A. Cairns. (2000). “Carbon Flux and Patterns of Land-Use/ Land-Cover Change in the Selva Lacandona, Mexico”. AMBIO: A Journal of the Human Environment. 29 (8): 504–511. 10.1579/0044-7447-29.8.504.

[26] P. R. Grace, W. M. Post, and K. Hennessy. (2006). “The potential impact of climate change on Australia’s soil organic carbon resources”. Carbon Balance and Management. 1 (1): 14. 10.1186/1750-0680-1-14.

[27] L. Gibson, T. M. Lee, L. P. Koh, B. W. Brook, T. A. Gardner, J. Barlow, C. A. Peres, C. J. A. Bradshaw, W. F. Laurance, T. E. Lovejoy, and N. S. Sodhi. (2011). “Primary forests are irreplaceable for sustaining tropical biodiversity”. Nature. 478 (7369): 378–381. 10.1038/nature10425.

[28] P. E. Kauppi, R. A. Birdsey, Y. Pan, A. Ihalainen, P. Nöjd, and A. Lehtonen. (2015). “Effects of land management on large trees and carbon stocks”. Biogeosciences. 12 (3): 855–862. 10.5194/bg-12-855-2015.

[29] H. Keith, D. B. Lindenmayer, B. G. Mackey, D. Blair, L. Carter, L. McBurney, S. Okada, and T. Konishi-Nagano. (2014). “Accounting for Biomass Carbon Stock Change Due to Wildfire in Temperate Forest Landscapes in Australia”. PLoS One. 9 (9): e107126. 10.1371/journal.pone.0107126.

[30] S. P. Hamburg. (2000). “Simple rules for measuring changes in ecosystem carbon in forestry-offset projects”. Mitigation and Adaptation Strategies for Global Change. 5 (1): 25–37. 10.1023/A:1009692114618.

[31] C. M. Sharma, S. Gairola, N. P. Baduni, S. K. Ghildiyal, and S. Suyal. (2011). “Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India”. Journal of Biosciences. 36 (4): 701–708. 10.1007/s12038-011-9103-4.

[32] Q. M. Ketterings, R. Coe, M. van Noordwijk, Y. Ambagau’, and C. A. Palm. (2001). “Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests”. Forest Ecology and Management. 146 (3): 199–209. 10.1016/S0378-1127(00)00460-6.

[33] R. A. Bluffstone, E. Somanathan, P. Jha, H. Luintel, R. Bista, M. Toman, N. Paudel, and B. Adhikari. (2018). “Does Collective Action Sequester Carbon? Evidence from the Nepal Community Forestry Program”. World Development. 101 : 133–141. 10.1016/j.worlddev.2017.07.030.

[34] B. B. Pradhan, R. M. Shrestha, N. T. Hoa, and Y. Matsuoka. (2017). “Carbon prices and greenhouse gases abatement from agriculture, forestry and land use in Nepal”. Global Environmental Change. 43 : 26–36. 10.1016/j.gloenvcha.2017.01.005.

[35] B. M. Shrestha and B. R. Singh. (2008). “Soil and vegetation carbon pools in a mountainous watershed of Nepal”. Nutrient Cycling in Agroecosystems. 81 (2): 179–191. 10.1007/s10705-007-9148-9.

[36] K. Hurni, J. Van Den Hoek, and J. Fox. (2019). “Assessing the spatial, spectral, and temporal consistency of topographically corrected Landsat time series composites across the mountainous forests of Nepal”. Remote Sensing of Environment. 231 : 111225. 10.1016/j.rse.2019.111225.

[37] T. N. Maraseni, P. R. Neupane, F. Lopez-Casero, and T. Cadman. (2014). “An assessment of the impacts of the REDD+ pilot project on community forests user groups (CFUGs) and their community forests in Nepal”. Journal of Environmental Management. 136 : 37–46. 10.1016/j.jenvman.2014.01.011.

[38] B. P. Shrestha. (2009). “Carbon Sequestration in Broad Leaved Forests of Mid-Hills of Nepal: A Case Study from Palpa District”. The Initiation. 3 : 20–29. 10.3126/init.v3i0.2424.

[39] K. Bhattarai, D. Conway, and M. Yousef. (2009). “Determinants of deforestation in Nepal’s Central Development Region”. Journal of Environmental Management. 91 (2): 471–488. 10.1016/j.jenvman.2009.09.016.

[40] C. S. R. Neigh, R. F. Nelson, K. J. Ranson, H. A. Margolis, P. M. Montesano, G. Sun, V. Kharuk, E. Næsset, M. A. Wulder, and H. E. Andersen. (2013). “Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR”. Remote Sensing of Environment. 137 : 274–287. 10.1016/j.rse.2013.06.019.

[41] E. B. Rana, H. L. Shrestha, and R. Silwal. (2008). “Participatory Carbon Estimation in Community Forest: Methodologies and Learnings”. The Initiation. 2 (1): 91–98. 10.3126/init.v2i1.2528.

[42] G. Vachnadze, Z. Tiginashvili, G. Tsereteli, B. Aptsiauri, and L. Basilidze. (2018). “Carbon Stock Sequestered in the phytocenosis of oak forests in Georgia”. Annals of Agrarian Science. 16 (4): 476–480. 10.1016/j.aasci.2018.05.002.

[43] I. E. Olorunfemi, J. T. Fasinmirin, A. A. Olufayo, and A. A. Komolafe. (2020). “Total carbon and nitrogen stocks under different land use/land cover types in the Southwestern region of Nigeria”. Geoderma Regional. 22 : e00320. 10.1016/j.geodrs.2020.e00320.

[44] E. T. Komolafe, K. S. Chukwuka, M. C. Obiakara, and O. Osonubi. (2020). “Carbon stock and sequestration potential of Ibodi monkey forest in Atakumosa, Osun state, Nigeria”. Trees, Forests and People. 2 : 100031. 10.1016/j.tfp.2020.100031.

[45] J. Chave, C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, N. Higuchi, T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riéra, and T. Yamakura. (2005). “Tree allometry and improved estimation of carbon stocks and balance in tropical forests”. Oecologia. 145 (1): 87–99. 10.1007/s00442-005-0100-x.

[46] M. D. Behera, P. Tripathi, B. Mishra, S. Kumar, V. S. Chitale, and S. K. Behera. (2016). “Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data”. Advances in Space Research. 57 (2): 552–561. 10.1016/j.asr.2015.11.010.

[47] Y. K. Karna, Y. A. Hussin, H. Gilani, M. C. Bronsveld, M. S. R. Murthy, F. M. Qamer, B. S. Karky, T. Bhattarai, X. Aigong, and C. B. Baniya. (2015). “Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal”. International Journal of Applied Earth Observation and Geoinformation. 38 : 280–291. 10.1016/j.jag.2015.01.011.

[48] K. Kralicek, B. Huy, K. P. Poudel, H. Temesgen, and C. Salas. (2017). “Simultaneous estimation of above- and below-ground biomass in tropical forests of Viet Nam”. Forest Ecology and Management. 390 : 147–156. 10.1016/j.foreco.2017.01.030.

[49] A. N. Djomo and C. D. Chimi. (2017). “Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing”. Forest Ecology and Management. 391 : 184–193. 10.1016/j.foreco.2017.02.022.

[50] M. A. Sheikh, M. Kumar, R. W. Bussman, and N. Todaria. (2011). “Forest carbon stocks and fluxes in physiographic zones of India”. Carbon Balance and Management. 6 (1) : 15. 10.1186/1750-0680-6-15.

[51] A. R. Martin and S. C. Thomas. (2011). “A Reassessment of Carbon Content in Tropical Trees”. PLoS One. 6 (8): e23533. 10.1371/journal.pone.0023533.

[52] H. Yohannes, T. Soromessa, and M. Argaw. (2015). “Carbon Stock Analysis Along Altitudinal Gradient in Gedo Forest: Implications for Forest Management and Climate Change Mitigation”. American Journal of Environmental Protection. 4 (5): 237. 10.11648/j.ajep.20150405.14.

[53] N. Timilsina, M. S. Ross, and J. T. Heinen. (2007). “A community analysis of sal (Shorea robusta) forests in the western Terai of Nepal”. Forest Ecology and Management. 241 (3): 223–234. 10.1016/j.foreco.2007.01.012.

[54] O. Rautiainen. (1999). “Spatial yield model for Shorea robusta in Nepal”. Forest Ecology and Management. 119 (3): 151–162. 10.1016/S0378-1127(98)00519-2.

[55] I. E. Måren and L. N. Sharma. (2021). “Seeing the wood for the trees: Carbon storage and conservation in temperate forests of the Himalayas”. Forest Ecology and Management. 487 : 119010. 10.1016/j.foreco.2021.119010.

[56] S. Brown and A. E. Lugo. (1982). “The Storage and Production of Organic Matter in Tropical Forests and Their Role in the Global Carbon Cycle”. Biotropica. 14 (3): 161. 10.2307/2388024.

[57] B. Mwakisunga and A. E. Majule. (2012). “The influence of altitude and management on carbon stock quantities in rungwe forest, southern highland of Tanzania”. Open Journal of Ecology. 2 (4): 214–221. 10.4236/oje.2012.24025.

[58] T. P. Gautam and T. N. Mandal. (2016). “Effect of disturbance on biomass, production and carbon dynamics in moist tropical forest of eastern Nepal”. Forest Ecosystems. 3 (1): 11. 10.1186/s40663-016-0070-y.

[59] R. A. Houghton. (2005). “Aboveground Forest Biomass and the Global Carbon Balance”. Global Change Biology. 11 (6): 945–958. 10.1111/j.1365-2486.2005.00955.x.

[60] A. Feyissa, T. Soromessa, and M. Argaw. (2014). “Forest Carbon Stocks and Variations along Altitudinal Gradients in Egdu Forest: Implications of Managing Forests for Climate Change Mitigation”. Science, Technology and Arts Research Journal. 2 (4): 40. 10.4314/star.v2i4.8.

[61] O. Maggi, A. M. Persiani, M. A. Casado, and F. D. Pineda. (2005). “Effects of elevation, slope position and livestock exclusion on microfungi isolated from soils of Mediterranean grasslands”. Mycologia. 97 (5): 984–995. 10.1080/15572536.2006.11832748.

[62] N. A. Mohd Zaki, Z. A. Latif, and M. N. Suratman. (2018). “Modelling above-ground live trees biomass and carbon stock estimation of tropical lowland Dipterocarp forest: integration of field-based and remotely sensed estimates”. International Journal of Remote Sensing. 39 (8): 2312–2340. 10.1080/01431161.2017.1421793.

[63] B. S. Jina, P. Sah, M. D. Bhatt, and Y. S. Rawat. (2009). “Estimating Carbon Sequestration Rates and Total Carbon Stockpile in Degraded and Non-Degraded Sites of Oak and Pine Forest of Kumaun Central Himalaya”. Ecoprint: An International Journal of Ecology. 15 : 75–81. 10.3126/eco.v15i0.1946.

[64] S. Charmakar, B. N. Oli, N. R. Joshi, T. N. Maraseni, and K. Atreya. (2021). “Forest Carbon Storage and Species Richness in FSC Certified and Non-certified Community Forests in Nepal”. Small-scale Forestry. 10.1007/s11842-020-09464-3.

[65] I. Y. Pandya, H. Salvi, O. Chahar, and N. Vaghela. (2013). “Quantitative Analysis on Carbon Storage of 25 Valuable Tree Species of Gujarat, Incredible India”. Indian Journal of Scientific Research. 4 (1): 137–141.

[66] C. Leuschner, G. Moser, C. Bertsch, M. Röderstein, and D. Hertel. (2007). “Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador”. Basic and Applied Ecology. 8 (3): 219–230. 10.1016/j.baae.2006.02.004.

[67] G. Moser, D. Hertel, and C. Leuschner. (2007). “Altitudinal Change in LAI and Stand Leaf Biomass in Tropical Montane Forests: a Transect Study in Ecuador and a Pan-Tropical Meta-Analysis”. Ecosystems. 10 (6): 924–935. 10.1007/s10021-007-9063-6.

[68] C. R. Sanquetta, J. Wojciechowski, A. P. D. Corte, A. L. Rodrigues, and G. C. B. Maas. (2013). “On the use of data mining for estimating carbon storage in the trees”. Carbon Balance and Management. 8 (1): 6. 10.1186/1750-0680-8-6.




How to Cite

B. Bohara, M. S. Miya, S. Timilsina, D. Gautam, and S. Regmi, “Biomass and Carbon Stock Variation along slopes in Tropical Forest of Nepal: A case of Depard Community Forest, Makwanpur, Nepal”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 2, pp. 89-99, Jun. 2021.