Green Synthesis of Gold Nanoparticles using Pimenta dioica Leaves Aqueous Extract and Their Application as Photocatalyst, Antioxidant, and Antibacterial Agents

Authors

  • Adewale Fadaka Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai – 911101 (Nigeria)
  • Olukemi Aluko Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai – 911101 (Nigeria)
  • Saartjie Awawu Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, Lapai – 911101 (Nigeria)
  • Karim Theledi Department of Biotechnology, University of the Western Cape, Bellville – 7530 (South Africa)

DOI:

https://doi.org/10.47352/jmans.v1i2.81

Keywords:

antibacterial, antioxidant, catalyst, gold nanoparticles, Pimenta dioica

Abstract

Green synthesis of gold nanoparticles (AuNPs) is of particular interest due to their catalytic, antioxidant, and antibacterial properties. In this study, the aqueous extract of Pimenta dioica leaves was used to synthesize AuNPs and the effective parameters were investigated. The prepared AuNPs were characterized by various techniques including UV–Vis absorption spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), and X-ray diffractometer (XRD). The reduction and stabilization effect of the plant extract to fabricate AuNPs were explained by FTIR analysis. TEM imaging confirmed the formation of spherical-shaped AuNPs. The catalytic activity of synthesized nanoparticles was evaluated in the degradation of a Methylene Blue dye in the presence of NaBH4 as reducing agent and achieved after only two minutes. The AuNPs provided high antioxidant ability. In addition, the synthesized AuNPs showed a significant inhibitory effect against both gram-positive and gram-negative bacteria, where the zone of inhibition of 4 and 9 mm were obtained for synthesized AuNPs against S. aureus and E. coli, respectively.

References

[1] R. C. Sanfelice, L. A. Mercante, A. Pavinatto, N. B. Tomazio, C. R. Mendonça, S. J. L. Ribeiro, L. H. C. Mattoso, and D. S. Correa. (2017). “Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications”. Journal of Materials Science. 52 (4): 1919–1929. 10.1007/s10853-016-0481-8.

[2] C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F. X. Xie, F. Huang, and Y. Cao. (2012). “Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells”. Journal of Materials Chemistry. 22 (3): 1206–1211. 10.1039/C1JM14150C.

[3] K. Pungjunun, S. Chaiyo, I. Jantrahong, S. Nantaphol, W. Siangproh, and O. Chailapakul. (2018). “Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device”. Microchimica Acta. 185 (7): 324. 10.1007/s00604-018-2821-7.

[4] H. R. M. Jhong, C. E. Tornow, C. Kim,  S. Verma, J. L. Oberst,  P. S. Anderson, A. A. Gewirth, T. Fujigaya, N. Nakashima, and P. J. A. Kenis. (2017). “Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2”. ChemPhysChem. 18 (22): 3274–3279. 10.1002/cphc.201700815.

[5] T. D. Tran, M. T. T. Nguyen, H. V. Le, D. N. Nguyen, Q. D. Truong, and P. D. Tran. (2018). “Gold nanoparticles as an outstanding catalyst for the hydrogen evolution reaction”. Chemical Communications. 54 (27): 3363–3366. 10.1039/c8cc00038g.

[6] M. Gholinejad, N. Dasvarz, M. Shojafar, and J. M. Sansano. (2019). “Starch functionalized creatine for stabilization of gold nanoparticles: Efficient heterogeneous catalyst for the reduction of nitroarenes”. Inorganica Chimica Acta. 495. 10.1016/j.ica.2019.118965.

[7] B. Li, X. Li, Y. Dong, B. Wang, D. Li, Y. Shi, and Y. Wu. (2017). “Colorimetric Sensor Array Based on Gold Nanoparticles with Diverse Surface Charges for Microorganisms Identification”. Analytical Chemistry. 89 (20): 10639–10643. 10.1021/acs.analchem.7b02594.

[8] X. Niu, Y. Zhong, R. Chen, F. Wang, Y. Liu, and D. Luo. (2018). “A ‘turn-on’ fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles”. Sensors Actuators B Chemical. 255 : 1577–1581. 10.1016/j.snb.2017.08.167.

[9] Y. Xu, F. Y. H. Kutsanedzie, M. Hassan, J. Zhu, W. Ahmad, H. Li, and Q. Chen. (2020). “Mesoporous silica supported orderly-spaced gold nanoparticles SERS-based sensor for pesticides detection in food”. Food Chemistry. 315 : 126300. 10.1016/j.foodchem.2020.126300.

[10] M. Sharifi, F. Attar, A. A. Saboury, K. Akhtari, N. Hooshman, A. Hasan, M. A. El-Sayed, and M. Falahati. (2019). “Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy”. Journal of Controlled Release. 311–312 : 170–189. 10.1016/j.jconrel.2019.08.032.

[11] H. Bin Jeon, P. V. Tsalu, and J. W. Ha. (2019). “Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices”. Scientific Reports. 9 (1): 13635. 10.1038/s41598-019-50032-3.

[12] M. D. Ho, Y. Ling, L. W. Yap, Y. Wang, D. Dong, Y. Zhao, and W. Cheng. (2017). “Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward ‘Invisible’ Wearable Sensors for Detecting Emotional Expression and Apexcardiogram”. Advanced Functional Materials. 27 (25): 1700845. 10.1002/adfm.201700845.

[13] M. M. Chen, W. Zhao, M. J. Zhu, X. L. Li, C. H. Xu, H. Y. Chena, and J. J. Xu. (2019). “Spatiotemporal imaging of electrocatalytic activity on single 2D gold nanoplates via electrogenerated chemiluminescence microscopy”. Chemical Science. 10 (15): 4141–4147. 10.1039/C9SC00889F.

[14] A. P. Sangnier, A. V. Walle, R. Aufaure, M. Fradet, L. Motte, E. Guénin, Y. Lalatonne, and C. Wilhelm. (2020). “Photothermal Therapy: Endosomal Confinement of Gold Nanospheres, Nanorods, and Nanoraspberries Governs Their Photothermal Identity and Is Beneficial for Cancer Cell Therapy”. Advanced Biosystems. 4 (4): 2070042. 10.1002/adbi.202070042.

[15] H. L. Liu, J. Cao, S. Hanif, C. Yuan, J. Pang, R. Levicky, X. H. Xia, and K. Wang. (2018). “Size-Controllable Gold Nanopores with High SERS Activity”. Analytical Chemistry. 89 (19): 10407–10413. 10.1021/acs.analchem.7b02410.

[16] W. Xin, I. M. De Rosa, P. Ye, J. Severino, C. Li, X. Yin, M. S. Goorsky, L. Carlson, and  J. M. Yang. (2018). “Graphene template-induced growth of single-crystalline gold nanobelts with high structural tunability”. Nanoscale. 10 (6): 2764–2773. 10.1039/C7NR07514F.

[17] N. Elahi, M. Kamali, and M. H. Baghersad. (2018). “Recent biomedical applications of gold nanoparticles: A review”. Talanta. 184 : 537–556. 10.1016/j.talanta.2018.02.088.

[18] Q. Zhang, Y. Gong, X. Guo, P. Zhang, and C. Ding. (2018). “Multifunctional Gold Nanoparticle-Based Fluorescence Resonance Energy-Transfer Probe for Target Drug Delivery and Cell Fluorescence Imaging”. ACS Applied Materials & Interfaces. 10 (41): 34840–34848. 10.1021/acsami.8b12897.

[19] Z. Molnár, V. Bódai, G. Szakacs, B. Erdélyi, Z. Fogarassy, G. Sáfrán, T. Varga, Z. Kónya, E. T. Szeles, R. Szűcs, and I. Lagzi. (2018). “Green synthesis of gold nanoparticles by thermophilic filamentous fungi”. Scientific Reports. 8 (1): 3943. 10.1038/s41598-018-22112-3.

[20] J. Santhoshkumar, S. Rajeshkumar, and S. Venkat Kumar. (2017). “Phyto-assisted synthesis, characterization and applications of gold nanoparticles – A review”. Biochemistry and Biophysics Reports. 11 : 46–57. 10.1016/j.bbrep.2017.06.004.

[21] L. Freitas de Freitas, G. Varca, J. dos Santos Batista, and A. Benévolo Lugão. (2018). “An Overview of the Synthesis of Gold Nanoparticles Using Radiation Technologies”. Nanomaterials. 8 (11): 939. 10.3390/nano8110939.

[22] C. Daruich De Souza, B. Ribeiro Nogueira, and M. E. C. M. Rostelato. “Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction”. Journal of Alloys and Compounds. 798 : 714–740. 10.1016/j.jallcom.2019.05.153.

[23] M. Ali Dheyab, A. Abdul Aziz, P. Moradi Khaniabadi, M. S. Jameel, N. M. Ahmed, and A. Taha Ali. (2021). “Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production”. Materials Research Express. 8 (1): 015009. 10.1088/2053-1591/abd5a4.

[24] O. M. El-Borady, M. S. Ayat, M. A. Shabrawy, and P. Millet. (2020). “Green synthesis of gold nanoparticles using Parsley leaves extract and their applications as an alternative catalytic, antioxidant, anticancer, and antibacterial agents”. Advanced Powder Technology. 31 (10): 4390–4400. 10.1016/j.apt.2020.09.017.

[25] C. Dima, M. Cotârlet, P. Alexe, and S. Dima. (2014). “Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method”. Innovative Food Science & Emerging Technologies. 22 : 203–211. 10.1016/j.ifset.2013.12.020.

[26] R. Li, Y. Pan, N. Li, Q. Wang, Y. Chen, M. Phisalaphong, and H. Chen. (2020). “Antibacterial and cytotoxic activities of a green synthesized silver nanoparticles using corn silk aqueous extract,” Colloids and Surfaces A: Physicochemical and Engineering Aspects. 598 : 124827. 10.1016/j.colsurfa.2020.124827.

[27] V. S. Murali, V. N. Meena Devi, P. Parvathy, and M. Murugan. (2020). “Phytochemical screening, FTIR spectral analysis, antioxidant and antibacterial activity of leaf extract of Pimenta dioica Linn”. Materials Today: Proceedings. 10.1016/j.matpr.2020.10.038.

[28] P. Kharey, S. B. Dutta, A. Gorey, M. Manikandan, A. Kumari, S. Vasudevan, I. A. Palani, S. K. Majumder, and S. Gupta. (2020). “Pimenta dioica Mediated Biosynthesis of Gold Nanoparticles and Evaluation of Its Potential for Theranostic Applications”. ChemistrySelect. 5 (26): 7901–7908. 10.1002/slct.202001230.

[29] C. Jayaseelan, R. Ramkumar, A. A. Rahuman, and P. Perumal. (2013). “Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity”. Industrial Crops and Products. 45 : 423–429. 10.1016/j.indcrop.2012.12.019.

[30] H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa. (2021). “Bioactivities of nano-scale magnesium oxide prepared using aqueous extract of Moringa Oleifera leaves as green agent”. Advances in Natural Sciences: Nanoscience and Nanotechnology. 12 (1): 015006. 10.1088/2043-6254/abde39.

[31] V. Thi Lan Huong and N. T. Nguyen. (2020). “Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract”. Materials Today: Proceedings. 10.1016/j.matpr.2020.10.015.

[32] S. U. Ganaie, T. Abbasi, and S. A. Abbasi. (2015). “Green Synthesis of Silver Nanoparticles Using an Otherwise Worthless Weed Mimosa ( Mimosa pudica ): Feasibility and Process Development Toward Shape/Size Control”. Particulate Science and Technology. 33 (6): 638–644. 10.1080/02726351.2015.1016644.

[33] K. O. Shittu, M. T. Bankole, A. S. Abdulkareem, O. K. Abubakre, and A. U. Ubaka. (2017). “Application of gold nanoparticles for improved drug efficiency”. Advances in Natural Sciences: Nanoscience and Nanotechnology. 8 (3): 035014. 10.1088/2043-6254/aa7716.

[34] B. Sundararajan and B. D. Ranjitha Kumari. (2017). “Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L.”. Journal of Trace Elements in Medicine and Biology. 43 : 187–196. 10.1016/j.jtemb.2017.03.008.

[35] A. Marchese, R. Barbieri, E. Coppo, I. E. Orhan, M. Daglia, S. F. Nabavi, M. Izadi, M. Abdollahi, S. M. Nabavi, and M. Ajami. (2017). “Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint,” Critical Reviews in Microbiology. 43 (6): 668–689. 10.1080/1040841X.2017.1295225.

[36] M. Parlinska-Wojtan, J. Depciuch, B. Fryc, and M. Kus-Liskiewicz. (2018). “Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using clove eugenol”. Applied Organometalic Chemistry. 32 (4): e4276. 10.1002/aoc.4276.

[37] Y. Galagan and W.-F. Su. “Reversible photoreduction of methylene blue in acrylate media containing benzyl dimethyl ketal”. Journal of Photochemistry and Photobiology A: Chemistry. 195 (2–3): 378–383. 10.1016/j.jphotochem.2007.11.005.

[38] G. M. Sulaiman, W. H. Mohammed, T. R. Marzoog, A. A. A. Al-Amiery, A. A. H. Kadhum, and A. B. Mohamad. (2013). “Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract”. Asian Pacific Journal of Tropical Biomedicine. 3 (1): 58–63. 10.1016/S2221-1691(13)60024-6.

[39] P. Velmurugan, M. Iydroose, S. M. Lee, M. Cho, J. H. Park, V. Balachandar, and B.T. Oh. (2014). “Synthesis of Silver and Gold Nanoparticles Using Cashew Nut Shell Liquid and Its Antibacterial Activity Against Fish Pathogens,” Indian Journal of Microbiology. 54 (2): 196–202. 10.1007/s12088-013-0437-5.

[40] S. I. Yamagishi and T. Matsui. (2011). “Nitric oxide, a janus-faced therapeutic target for diabetic microangiopathy - Friend or foe?”. Pharmacological Research. 64 (3): 187–194. 10.1016/j.phrs.2011.05.009.

[41] K. Baek and J. K. Patra. (2015). “Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential”. International Journal of Nanomedicine. 10 (1). 7253–7264.  10.2147/IJN.S95483.

[42] G. Sathishkumar, K. J. Pradeep, V. Vignesh, C. Rajkuberan, M. Jeyaraj, M. Selvakumar, J. Rakhi, and S. Sivaramakrishnan. (2016). “Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity”. Journal of Molecular Liquids. 215 : 229–236. 10.1016/j.molliq.2015.12.043.

[43] X. Li, G. Gao, C. Sun, Y. Zhu, L. Qu, F. Jiang, and H. Ding. (2015). “Preparation and antibacterial performance testing of Ag nanoparticles embedded biological materials”. Applied Surface Science. 330 : 237–244. 10.1016/j.apsusc.2015.01.004.

[44] N. Rahbar, L. Nazernezhad, M. Asadinezhad, Z. Ramezani, and M. Kouchak. (2018). “A novel micro-extraction strategy for extraction of bisphosphonates from biological fluids using zirconia nanoparticles coupled with spectrofluorimetry and high performance liquid chromatography”. Journal of Food and Drug Analysis. 26 (4): 1303–1311. 10.1016/j.jfda.2018.03.005.

[45] E. Inclan and M. Yoon. (2019). “Performance of biologically inspired algorithms tuned on TiO2 nanoparticle benchmark system”. Computational Materials Science. 165 : 63–73. 10.1016/j.commatsci.2019.03.017.

[46] M. Misawa and J. Takahashi. (2011). “Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV Irradiations”. Nanomedicine: Nanotechnology, Biology and Medicine. 7 (5): 604–614. 10.1016/j.nano.2011.01.014.

[47] H. F. M. Xavier, V. M. Nadar, P. Patel, D. Umapathy, A. V. Joseph, S. Manivannan, P. Santhiyagu, B. Pandi, G. Muthusamy, Y. Rathinam, and K. Ponnuchamy. (2020). “Selective antibacterial and apoptosis-inducing effects of hybrid gold nanoparticles – A green approach”. Journal of Drug Delivery Science and Technology. 59 : 101890. 10.1016/j.jddst.2020.101890.

Downloads

Published

2021-05-09

How to Cite

[1]
A. Fadaka, O. Aluko, S. Awawu, and K. Theledi, “Green Synthesis of Gold Nanoparticles using Pimenta dioica Leaves Aqueous Extract and Their Application as Photocatalyst, Antioxidant, and Antibacterial Agents”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 2, pp. 78-88, May 2021.