Efficient and Low-Cost Removal of Methylene Blue using Activated Natural Kaolinite Material


  • Christyowati Primi Sagita Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang-65151 (Indonesia); Department of Industrial Chemistry, Pukyong National University, Busan-48513 (South Korea) http://orcid.org/0000-0002-9626-091X
  • Limpat Nulandaya Center for Progressive Materials-Technology and Innovation Park, Pavol Jozef Šafárik University, Kosice-04011 (Slovakia); Institute of Experimental Physics, Slovak Academy of Sciences, Kosice-04001 (Slovakia) https://orcid.org/0000-0002-0898-7933
  • Yehezkiel Steven Kurniawan Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang-65151 (Indonesia) http://orcid.org/0000-0002-4547-239X




kaolinite, adsorption, methylene blue, Wediombo beach, acid activation


Clays are low-price and very useful material for water treatment purpose. In this work, we reported the application of activated natural kaolinite material which obtained from Wediombo beach, Yogyakarta for methylene blue adsorption. The natural kaolinite material was activated under an acidic condition to obtain the activated kaolinite material. The activated kaolinite material was characterized using Fourier transform infrared, X-ray diffraction, scanning electron microscope, and surface analysis. From the adsorption experiment, the activated kaolinite material gave moderate adsorption percentages for methylene blue. The adsorption kinetics followed the Ho and McKay kinetic model while the adsorption isotherm followed Langmuir model. The qmax value for methylene blue adsorption using activated natural kaolinite material was at a moderate level (3.40 mg g-1). The plausible adsorption mechanism of methylene blue on the surface of activated kaolinite material happened through hydrogen bondings and/or electrostatic interactions. These findings are important for a wastewater treatment using a low-cost adsorbent material.


[1] G. N. Madapuri, H. N. Azwar, and M. A. Hasyim. (2021). “Estimation of CO2 Absorption, Biomass, and Carbon Deposit the Trees on the Street City of Malang”. Journal of Multidisciplinary Applied Natural Sciences. 1 (1): 18–24. 10.47352/jmans.v1i1.5.

[2] J. Jumina, Y. Yasodhara, S. Triono, Y. S. Kurniawan, Y. Priastomo, H. M. Chawla, and N. Kumar. (2021). “Preparation and Evaluation of a-Cellulose Based New Heterogeneous Catalyst for Production of Biodiesel”. Journal of Applied Polymer Science. 138 (2): 49658. 10.1002/app.49658.

[3] N. A. S. M. Sandollah, S. A. I. S. M. Ghazali, W. N. W. Ibrahim, and R. Rusmin. (2020). “Adsorption-Desorption Profile of Methylene Blue Dye on Raw and Acid Activated Kaolinite”. Indonesian Journal of Chemistry. 20 (4): 755–765. 10.22146/ijc.43552.

[4] M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad. (2010). “Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review”. Journal of Hazardous Materials. 177: 70–80. 10.1016/j.jhazmat.2009.12.047.

[5] D. Pathania, S. Sharma, and P. Singh. (2017). “Removal of Methylene Blue by Adsorption onto Activated Carbon Developed from Ficus carica Bast”. Arabian Journal of Chemistry. 10: S1445–S1451. 10.1016/j.arabjc.2013.04.021.

[6] A. C. Imawan, Y. S. Kurniawan, M. F. Lukman, J. Jumina, T. Triyono, and D. Siswanta. (2018). “Synthesis and Kinetic Study of the Urea Controlled Release Composite Material: Sodium Lignosulfonate from Isolation of Wood Sawdust-Sodium Alginate-Tapioca”. Indonesian Journal of Chemistry. 18 (1): 108–115. 10.22146/ijc.26597.

[7] H. Awala, E. Leite, L. C. Marcel, G. Clet, R. Retoux, I. Naydenova, and S. Mintova. (2016). “Properties of Methylene Blue in the Presence of Zeolite Nanoparticles”. New Journal of Chemistry. 40: 4277–4284. 10.1039/C5NJ02643A.

[8] G. K. Dedzo. (2018). “Kaolinite Clay Mineral Reactivity Improvement through Ionic Liquid Functionalization”. Israel Journal of Chemistry. 59 (9): 778–788. 10.1002/ijch.201800130.

[9] R. R. Elmorsi, S. T. El-Wakeel, W. A. S. El-Dein, H. R. Lotfy, W. E. Rashwan, M. Nagah, S. A. Shaaban, S. A. S. Ahmed, I. Y. El-Sherif, and K. S. A. El-Sherbini. (2019). “Adsorption of Methylene Blue and Pb2+ by using Acid-Activated Posidonia oceanica Waste. Scientific Reports. 9: 3356. 10.1038/s41598-019-39945-1.

[10] Y. Liu, J. Jia, T. Gao, X. Wang, J. Yu, D. Wu, and F. Li. (2020). “Rapid, Selective Adsorption of Methylene Blue from Aqueous Solution by Durable Nanofibrous Membranes”. Journal of Chemical & Engineering Data. 65 (8): 3998–4008. 10.1021/acs.jced.0c00318.

[11] Y. Kuang, X. Zhang, and S. Zhou. (2020). “Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification”. Water. 12: 587. 10.3390/w12020587.

[12] O. S. Bayomie, H. Kandeel, T. Shoeib, H. Yang, N. Youssed, and M. M. H. El-Sayed. (2020). “Novel Approach for Effective Removal of Methylene Blue Dye from Water using Fava Been Peel Waste”. Scientific Reports. 10: 7824. 10.1038/s41598-020-64727-5.

[13] H. Han, M. K. Rafiq, T. Zhou, R. Xu, O. Masek, and X. Li. (2019). “A Critical Review of Clay-Based Composites with Enhanced Adsorption Performance for Metal and Organic Pollutants”. Journal of Hazardous Materials. 369: 780–796. 10.1016/j.jhazmat.2019.02.003.

[14] Y. S. Kurniawan, K. T. A. Priyangga, P. A. Krisbiantoro, and A. C. Imawan. (2021). “Green Chemistry Influences in Organic Synthesis: A Review”. Journal of Multidisciplinary Applied Natural Sciences. 1 (1): 1–12. 10.47352/jmans.v1i1.2.

[15] K. Rida, S. Bouraoui, and S. Hadnine. (2013). “Adsorption of Methylene Blue from Aqueous Solution by Kaolin and Zeolite”. Applied Clay Science. 83–84: 99–105. 10.1016/j.clay.2013.08.015.

[16] K. Mukherjee, A. Kedia, K. J. Rao, S. Dhir, and S. Paria. (2015). “Adsorption Enhancement of Methylene Blue Dye at Kaolinite Clay-Water Interface Influenced by Electrolyte Solutions”. RSC Advances. 5: 30654–30659. 10.1039/C5RA03534A.

[17] Q. Zhang, Y. Zhang, J. Chen, and Q. Liu. (2019). “Hierarchical Structure Kaolinite Nanospheres with Remarkably Enhanced Adsorption Properties for Methylene Blue”. Nanoscale Research Letters. 14: 109. 10.1186/s11671-019-2934-x.

[18] G. Hartono and S. Bronto. (2007). “Asal-Usul Pembentukan Gunung Batur di Daerah Wediombo, Gunungkidul, Yogyakarta”. Jurnal Geologi Indonesia. 2: 143-158.

[19] Y. S. Kurniawan, K. Thomas, H. Hendra, J. Jumina, and T. D. Wahyuningsih. (2021). “Green Synthesis of Alkyl 8-(2-butyl-5-octyl-1,3-dioxolan-4-yl)octanoate as Potential Biolubricants from Used Frying Oil”. Science Asia. 47: 10. 10.2306/scienceasia1513-1874.2021.010.

[20] M. G. Valles, P. Alfonso, S. Martinez, and N. Roca. (2020). “Mineralogical and Thermal Characterization of Kaolinitic Clays from Terra Alta (Catalonia, Spain)”. Minerals. 10: 142. 10.3390.min10020142.

[21] B. J. Saikia and G. Partasarathy. (2010). “Fourier Transform Infrared Spectroscopic Characterization of Kaolinite from Assam and Meghalaya, Northeastern India”. Journal of Modern Physics. 1: 206-210. 10.4236/jmp.2010.14031.

[22] T. Thiebault. (2019). “Raw and Modified Clays and Clay Minerals for the Removal of harmaceutical Products from Aqueous Solutions: State of the Art and Future Perspectives”. Critical Reviews in Environmental Science and Technology. 50 (14): 1451–1514. 10.1080/10643389.2019.1663065.

[23] I. Daou, G. L. Lecomte-Nana, N. Tessier-Doyen, C. Peyratout, M. F. Gonon, and R. Guinebretiere. (2020). “Probing the Dehydroxylation of Kaolinite and Halloysite by In Situ High Temperature X-ray Diffraction”. Minerals. 10: 480. 10.3390/min10050480.

[24] J. Jumina, Y. Priastomo, H. R. Setiawan, M. Mutmainah, Y. S. Kurniawan, and K. Ohto. (2020). “Simultaneous Removal of Lead(II), Chromium(III) and Copper(II) Heavy Metal Ions through an Adsorption Process using C-Phenylcalix[4]pyrogallolarene Material”. Journal of Environmental Chemical Engineering. 8: 103971. 10.1016/j.jece.2020.103971.

[25] D. Ghosh and K. G. Bhattacharyya. (2002). “Adsorption of Methylene Blue on Kaolinite”. Applied Clay Science. 20: 295-300. 10.1016/S0169-1317(01)00081-3.

[26] K. V. Kumar. (2002). “Adsorption Isotherm for Basic Dye onto Low Cost Adsorbents”. Research Journal of Chemistry and Environment. 6: 61-65.

[27] S. Wang, Y. Boyjoo, and A. A. Choueib. (2005). “A Comparative Study of Dye Removal using Fly Ash Treated by Different Methods”. Chemosphere. 60: 1401-1407. 10.1016/j.chemosphere.2005.01.091.

[28] S. Chakrabarti and B. K. Dutta. (2005). “Note on the Adsorption and Diffusion of Methylene Blue in Glass Fibers”. Journal of Colloid and Interface Science. 286: 807-811. 10.1016/j.jcis.2005.01.035.

[29] F. A. Batzias, D. K. Sidiras, E. Schroeder, and C. Weber. (2009). “Simulation of Dye Adsorption on Hydrolyzed Wheat Straw in Batch and Fixed-Bed Systems”. Chemical Engineering Journal. 148: 459-472. 10.1016/j.cej.2008.09.025.

[30] A. Aygun, S. Yenisoy-Karakas, and I. Duman. (2003). “Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties”. Microporous and Mesoporous Materials. 66: 189-195. 10.1016/j.micromeso.2003.08.028.

[31] F. C. Wu and R. L. Tseng. (2008). “High Adsorption Capacity NaOH-Activated Carbon for Dye Removal from Aqueous Solution”. Journal of Hazardous Materials. 152: 1256-1267. 10.1016/j.jhazmat.2007.07.109.

[32] Y. Fu and T. Viraraghavan. (2000). “Removal of A Dye from An Aqueous Solution by the Fungus Aspergillus niger”. Water Quality Research Journal. 35: 95-111. 10.2166/wqrj.2000.006.

[33] R. L. Tseng, S. K. Tseng, and F. C. Wu. (2006). “Preparation of High Surface Area Carbons from Corncob using KOH Combined with CO2 Gasification for the Adsorption of Dyes and Phenols from Water”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 279: 69-78. 10.1016/j.colsurfa.2005.12.042.

[34] W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh. (2006). “Characterization and Adsorption Properties of Eggshells and Eggshell Membrane”. Bioresource Technology. 97: 488-493. 10.1016/j.biortech.2005.02.050.

[35] C. Lee, K. Low, and S. Chow. (1996). “Chrome Sludge as An Adsorbent for Color Removal”. Environmental Technology. 17: 1023-1028. 10.1080/09593331708616471.

[36] Y. Mak, and D. H. Chen. (2004). “Fast Adsorption of Methylene Blue on Polyacrylic Acid-Bound Iron Oxide Magnetic Nanoparticles”. Dyes and Pigments. 61: 93-98. 10.1016/j.dyepig.2003.10.008.




How to Cite

C. P. Sagita, L. Nulandaya, and Y. S. Kurniawan, “Efficient and Low-Cost Removal of Methylene Blue using Activated Natural Kaolinite Material”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 2, pp. 69-77, Apr. 2021.