Cycle Stability of Dual-Phase Lithium Titanate (LTO)/TiO2 Nanowires as Lithium Battery Anode

Authors

  • Yillin Fan He School of Materials Science & Engineering, University of New South Wales, Sydney-2052 (Australia)
  • Dongzhi Yang Chu School of Materials Science & Engineering, University of New South Wales, Sydney-2052 (Australia)
  • Zhensheng Zhuo School of Materials Science & Engineering, University of New South Wales, Sydney-2052 (Australia)

DOI:

https://doi.org/10.47352/jmans.v1i1.8

Keywords:

anode, hydrothermal, lithium-ion battery, LTO-TiO2, nanowires

Abstract

This work studied cycle stability of dual-phase Lithium Titanate (LTO)/TiO2 nanowires as a lithium battery anode. Dual-phase LTO/TiO2 nanowires were successfully synthesized by hydrothermal method at various times lithiation of 10, 24, and 48 h at 80 °C. SEM images show that the morphology of dual-phase LTO/TiO2 is nanowires with a size around 100-200 nm in diameter. The XRD analysis result indicates nanowires main components are anatase (TiO2) and spinel Li4Ti5O12. The first discharge specific capacity of LTO/TiO2-10, LTO/TiO2-24, and LTO/TiO2-48 was 181.68, 175.29, and 154.30 mAh/g, respectively. After the rate capacity testing, the LTO/TiO2-10, LTO/TiO2-24, and LTO/TiO2-48 have maintained 161.25, 165.25, and 152.53 mAh/g separately. The retentions for each sample were 86.71, 92.86, and 89.79 %. Based on the results of electrochemical performance, increased LTO content helped increase samples cycle stability. However, the prolonged lithiation time also produced impurities, which reduced the cycle stability.

References

[1] Wu, L. Qian, X. Sun, X. Lei, N. Wu, H. Zhao, and Y. Zhang. (2018). “Cost effective surface passivation film construction on Li4Ti5O12 anode of lithium ion batteries”. Electrochimica Acta. 260 : 40–46. 10.1016/j.electacta.2017.11.090.

[2] M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens, and R. Marassi. (2011). “High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose”. Journal of Power Sources. 196 (22): 9665–9671. 10.1016/j.jpowsour.2011.07.028.

[3] X. Lan, Y. Xin, L. Wang, and X. Hu. (2018). “Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries”. Journal of Nanoparticle Research. 20 (3): 80. 10.1007/s11051-018-4165-y.

[4] D. Andre, S. J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos, and B. Stiaszny. (2015). “Future generations of cathode materials: an automotive industry perspective”. Journal of Materials Chemistry A. 3 (13): 6709–6732. 10.1039/C5TA00361J.

[5] J. Wang, Y. Yu, B. Li, T. Fu, D. Xie, J. Cai, and J. Zhao. (2015). “Improving the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 at 4.6 v cutoff potential by surface coating with Li2TiO3 for lithium-ion batteries”. Physical Chemistry Chemical Physics. 17 (47): 32033–32043. 10.1039/c5cp05319f.

[6] Z. Guo, Y. Fan, and S. Du. (2018). “Influence of lithium hexafluorophosphate/ethylene carbonate/dimethyl carbonate electrolyte soaking on heat seal strength of polyamide 6/aluminum/cast-polypropylene laminates used as lithium-ion battery packaging”. Journal of Plastic Film and Sheeting. 34 (1): 10–26. 10.1177/8756087916686141.

[7] J. Shi, N. Ehteshami, J. Ma, H. Zhang, H. Liu, X. Zhang, J. Li, and E. Paillard. (2019). “Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: Fluorosulfonyl isocyanate as electrolyte additive”. Journal of Power Sources. 429 : 67–74. 10.1016/j.jpowsour.2019.04.113.

[8] R. Zhao, S. Zhang, J. Liu, and J. Gu. (2015). “A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system”. Journal of Power Sources. 299 : 557–577. 10.1016/j.jpowsour.2015.09.001.

[9] S. Li and J. Mao. (2018). “The Influence of Different Types of Graphene on the Lithium Titanate Anode Materials of a Lithium Ion Battery”. Journal of Electronic Materials. 47 (9): 5410–5416. 10.1007/s11664-018-6439-7.

[10] Y. Cai, Y. Huang, W. Jia, X. Wang, Y. Guo, D. Jia, Z. Sun, W. Pang, and Z. Guo. (2016). “Super high-rate, long cycle life of europium-modified, carbon-coated, hierarchical mesoporous lithium-titanate anode materials for lithium ion batteries”. Journal of Materials Chemistry A. 25 (4): 9949-9957. 10.1039/C6TA03162E.

[11] T. Meng, F. Yi, H. Cheng, J. Hao, D. Shu, S. Zhao, C. He, X. Song, and F. Zhang. (2017). “Preparation of Lithium Titanate/Reduced Graphene Oxide Composites with Three-Dimensional ‘Fishnet-Like’ Conductive Structure via a Gas-Foaming Method for High-Rate Lithium-Ion Batteries”. ACS Applied Materials & Interfaces. 9 (49): 42883–42892. 10.1021/acsami.7b15525.

[12] Y. Wang, Y. X. Zhang, W. J. Yang, S. Jiang, X. W. Hou, R. Guo, W. Liu, P. Huang, J. Lu, and H. T. Gu. (2019). “Enhanced Rate Performance of Li4Ti5O12 Anode for Advanced Lithium Batteries”. Journal of The Electrochemical Society. 166 (3): A5014–A5018. 10.1149/2.0041903jes.

[13] Q. Tian, P. Chen, Z. Zhang, and L. Yang. (2017). “Achievement of significantly improved lithium storage for novel clew-like Li4Ti5O12 anode assembled by ultrafine nanowires”. Journal of Power Sources. 350 : 49–55. 10.1016/j.jpowsour.2017.03.065.

[14] Z. Chen, H. Li, L. Wu, X. Lu, and X. Zhang. (2018). “Li4Ti5O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices”. Chemical Record. 18 (3): 350–380. 10.1002/tcr.201700042.

[15] R. Li, W. Xiao, C. Miao, R. Fang, Z. Wang, and M. Zhang. (2019). “Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries”. Ceramics International. 45 (10): 13530–13535. 10.1016/j.ceramint.2019.04.059.

[16] K. Amine, I. Belharouak, Z. Chen, T. Tran, H. Yumoto, N. Ota, S. T. Myung, and Y. K. Sun. (2010). “Nanostructured anode material for high-power battery system in electric vehicles”. Advanced Materials. 22 (28): 3052–3057. 10.1002/adma.201000441.

[17] Z. Liu, Y. G. Andreev, A. Robert Armstrong, S. Brutti, Y. Ren, and P. G. Bruce (2013). “Nanostructured TiO2(B): the effect of size and shape on anode properties for Li-ion batteries”. Progress in Natural Science: Materials International. 23 (3): 235–244. 10.1016/j.pnsc.2013.05.001.

[18] L. Noerochim, R. Fikry, H. Nurdiansah, H. Purwaningsih, A. Subhan, J. Triwibowo, and B. Prihandoko. (2019). “Synthesis of dual-phase Li4Ti5O12-TiO2 nanowires as anode for lithium-ion battery”. Ionics. 25 (4): 1505–1511. 10.1007/s11581-018-2659-3.

[19] B. Shao, X. Yin, W. Hua, Y. Ma, J. Sun, C. Li, D. Chen, D. Guo, and K. Li. (2018). “Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method”. Physica B: Condensed Matter. 537 : 127–133. 10.1016/j.physb.2018.01.053.

[20] S. Briche, M. Derqaoui, M. Belaiche, E. M. el Mouchtari, P. Wong-Wah-Chung, and S. Rafqah. (2020). “Nanocomposite material from TiO2 and activated carbon for the removal of pharmaceutical product sulfamethazine by combined adsorption/photocatalysis in aqueous media”. Environmental Science and Pollution Research. 27 (20): 25523–25534. 10.1007/s11356-020-08939-2.

[21] Q. Guo, Q. Wang, G. Chen, H. Xu, J. Wu, and B. Li. (2016). “Molten Salt Synthesis of Transition Metal Oxides doped Li4Ti5O12 as Anode Material of Li-Ion Battery”. ECS Transactions. 72 (9): 11–23. 10.1149/07209.0011ecst.

[22] E. Golestani, M. Javanbakht, H. Ghafarian-Zahmatkesh, H. Beydaghi, and M. Ghaemi. (2018). “Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution”. Electrochimica Acta. 259 : 903–915. 10.1016/j.electacta.2017.10.123.

[23] A. Lakshmi-Narayana, M. Dhananjaya, N. Guru-Prakash, O. M. Hussain, A. Mauger, and C. M. Julien. (2018). “Li2TiO3/Graphene and Li2TiO3/CNT Composites as Anodes for High Power Li–Ion Batteries”. ChemistrySelect. 3 (31): 9150–9158. 10.1002/slct.201801510.

[24] Z. Yang, H. Guo, X. Li, Z. Wang, J. Wang, Y. Wang, Z. Yan, and D. Zhang. (2017). “Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors”. Journal of Materials Chemistry A. 5 (29): 15302–15309. 10.1039/c7ta03862c.

[25] Y. Huang, Y. He, H. Sheng, X. Lu, H. Dong, S. Samanta, H. Dong, X. Li, D. Y. Kim, H. K. Mao, Y. Liu, H. Li, H. Li, and L. Wamg. (2019). “Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12”. National Science Review. 6 (2): 239–246. 10.1093/nsr/nwy122.

[26] J. Zheng, Z. Yang, Z. He, H. Tong, W. Yu, and J. Zhang. (2018). “In situ formed LiNi0.8Co0.15Al0.05O2@Li4SiO4 composite cathode material with high rate capability and long cycling stability for lithium-ion batteries”. Nano Energy. 53 : 613–621. 10.1016/j.nanoen.2018.09.014.

[27] Zhou, X. Zhao, C. Yin, and J. Li. (2018). “Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries”. Electrochimica Acta. 291 : 142–150. 10.1016/j.electacta.2018.08.134.

Downloads

Published

2021-01-31

How to Cite

[1]
Y. F. He, D. Y. Chu, and Z. Zhuo, “Cycle Stability of Dual-Phase Lithium Titanate (LTO)/TiO2 Nanowires as Lithium Battery Anode”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 54-61, Jan. 2021.