Estimation of CO2 Absorption, Biomass, and Carbon Deposit the Trees on the Street City of Malang

Authors

  • Gita Niken Madapuri Department of Biology, Maulana Malik Ibrahim State Islamic University of Malang, Malang-65144 (Indonesia)
  • Haidar Nazarudin Azwar Department of Biology, Maulana Malik Ibrahim State Islamic University of Malang, Malang-65144 (Indonesia)
  • Muhammad Asmuni Hasyim Department of Biology, Maulana Malik Ibrahim State Islamic University of Malang, Malang-65144 (Indonesia)

DOI:

https://doi.org/10.47352/jmans.v1i1.5

Keywords:

allometric equation, carbon-stock, climate change, Malang

Abstract

Climate change increases the concentration of the greenhouse effect, this was caused by the lack of trees as a function of carbon sequestration. Therefore, this study aims to map the vegetation distribution in the streets of the city of Malang and to measure its carbon stocks. The used method was vegetation analysis, to calculate the estimation of biomass, carbon storage and CO2 absorption using the allometric equation Brown; Brown and Lugo; and Morikawa. The study was conducted at the street lots of traffic activity, there are six stations representing the city of Malang, those are Tlogomas Street, North of Ahmad Yani Street, Letjend Sutoyo Street, Panglima Sudirman Street, Sudanco Supriadi Street and Kolonel Sugiono Street. The results of this study are that the most carbon-absorbing tree is Albizia saman with a value of 287,656 kg and the region that absorbs the most carbon is Panglima Sudirman Street, that located in the middle of the city.   

References

[1]      R. J. Keenan. (2015). “Climate change impacts and adaptation in forest management: a review”. Annals of Forest Science. 72 (2): 145–167. 10.1007/s13595-014-0446-5.

[2]      Y. Boulanger, D. Arseneault, Y. Boucher, S. Gauthier, D. Cyr, A. R. Taylor, D. T. Price, and S. Dupuis. (2019). “Climate change will affect the ability of forest management to reduce gaps between current and presettlement forest composition in southeastern Canada”.  Landscape Ecology. 34 (1): 159–174. 10.1007/s10980-018-0761-6.

[3]      L. J. R. Nunes, C. I. R. Meireles, C. J. P. Gomes, and N. M. C. A. Ribeiro. (2020). “Forest contribution to climate change mitigation: Management oriented to carbon capture and storage”. Climate. 8 (2). 10.3390/cli8020021.

[4]      X. Zheng, D. Streimikiene, T. Balezentis, A. Mardani, F. Cavallaro, and H. Liao. (2019). “A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players”. Journal of Cleaner Production. 234: 1113–1133. 10.1016/j.jclepro.2019.06.140.

[5]      A. T. Trugman, L. D. L. Anderegg, B. T. Wolfe, B. Birami, N. K. Ruehr, M. Detto, M. K. Bartlett, and W. R. L. Anderegg. “Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity”. Global Change Biology. 25 (10): 3395–3405. 10.1111/gcb.14680.

[6]      M. E. Dusenge, A. G. Duarte, and D. A. Way. (2019). “Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration”. New Phytologist. 221 (1): 32–49. 10.1111/nph.15283.

[7]      R. D. Lasco. (2002). “Forest carbon budgets in Southeast Asia following harvesting and land cover change”.  Science China. 45 (October): 55–64.

[8]      M. P. Mchenry, S. N. Kulshreshtha, and S. Lac. (2015). “Land use, land-use change and forestry”. Land Use, Land-use Change and Forestry. 1–160. 10.4337/9781849805834.00023.

[9]      J. M. Northrup, J. W. Rivers, Z. Yang, and M. G. Betts. (2019). “Synergistic effects of climate and land-use change influence broad-scale avian population declines”. Global Change Biology. 25 (5): 1561–1575. 10.1111/gcb.14571.

[10]    G. H. Stoffberg, M. W. van Rooyen, M. J. van der Linde, and H. T. Groeneveld. (2010). “Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa”. Urban Forestry and Urban Greening. 9 (1): 9–14. 10.1016/j.ufug.2009.09.004.

[11]    R. C. R. Abreu, W. A. Hoffmann, H. L. Vasconcelos, N. A. Pilon, D. R. Rossatto, and G. Durigan. (2017). “The biodiversity cost of carbon sequestration in tropical savanna,” Science Advances. 3 (8). 10.1126/sciadv.1701284.

[12]    J. Fang, G. Yu, L. Liu, S. Hu, and F. S. Chapin. (2018). “Climate change, human impacts, and carbon sequestration in China”. Proceedings of the National Academy of Sciences of the United States of America. 115 (16): 4015–4020. 10.1073/pnas.1700304115.

[13]    Y. Yang, D. Tilman, G. Furey, and C. Lehman. (2019). “Soil carbon sequestration accelerated by restoration of grassland biodiversity”. Nature Communications. 10 (1). 10.1038/s41467-019-08636-w.

[14]    M. Daud, B. M. Bustam, and B. Arifin. (2019). “A comparative study of carbon dioxide absorption capacity of seven urban forest plant species of banda aceh, Indonesia”. Biodiversitas. 20 (11): 3372–3379. 10.13057/biodiv/d201134.

[15]    R. V. Pouyat and T. L. E. Trammell. (2019). “Climate change and urban forest soils”. Developments in Soil Science. 36 : 189–211. 10.1016/b978-0-444-63998-1.00010-0.

[16]    K. C. Seto, B. Güneralp, and L. R. Hutyra. (2012). “Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools”. Proceedings of the National Academy of Sciences of the United States of America. 109 (40): 16083–16088. 10.1073/pnas.1211658109.

[17]    Y. Tang, A. Chen, and S. Zhao. (2016). “Carbon storage and sequestration of urban street trees in Beijing, China”. Frontiers in Ecology and Evolution. 4 (5). 10.3389/fevo.2016.00053.

[18]    S. M. Raciti, L. R. Hutyra, and J. D. Newell. (2014). “Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods”. Science of the Total Environment. 501 : 72–83. 10.1016/j.scitotenv.2014.08.070.

[19]    S. Zhao, C. Zhu, D. Zhou, D. Huang, and J. Werner. (2013). “Organic Carbon Storage in China’s Urban Areas”. PLoS One. 8 (8). 10.1371/journal.pone.0071975.

[20]    Z. G. Davies, J. L. Edmondson, A. Heinemeyer, J. R. Leake, and K. J. Gaston. (2011). “Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale”. Journal of Applied Ecology. 48 (5): 1125–1134. 10.1111/j.1365-2664.2011.02021.x.

[21]    M. R. McHale, I. C. Burke, M. A. Lefsky, P. J. Peper, and E. G. McPherson. (2009). “Urban forest biomass estimates: Is it important to use allometric relationships developed specifically for urban trees?”. Urban Ecosystems. 12 (1): 95–113. 10.1007/s11252-009-0081-3.

[22]    L. R. Hutyra, B. Yoon, and M. Alberti. (2011). “Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region”. Global Change Biology. 17 (2): 783–797. 10.1111/j.1365-2486.2010.02238.x.

[23]    G. Churkina. (2016). “The role of urbanization in the global carbon cycle”. Frontiers in Ecology and Evolution. 3 (1). 10.3389/fevo.2015.00144.

[24]    B. Setiawan. (2014). “Inventarisasi Pohon Pelindung Dan Potensinya Sebagai Penyerap Karbon Dioksida (CO2) Serta Penyimpan Karbon Di Jalan Raya Kota Malang Universitas Islam Negeri”. Universitas Islam Negeri Maulana Malik Ibrahim.

[25]    A. G. Asfaw. (2018). “Woody Species Composition, Diversity and Vegetation Structure of Dry Afromontane Forest, Ethiopia”. Journal of Agriculture and Ecology Research International. 16 (3): 1–20. 10.9734/jaeri/2018/44922.

[26]    M. Cao, P. Pan, X. Z. Ouyang, H. Zang, J. K. Ning, L. L. Guo, and Y. Li. (2018). “Relationships between the composition and diversity of understory vegetation and environmental factors in aerially seeded Pinus massoniana plantations”. Chinese Journal of Ecology. 37 (1): 1–8. 10.13292/j.1000-4890.201801.009.

[27]    Z. H. Ning, R. Chambers, and K. Abdollahi. (2016). “Modeling air pollutant removal, carbon storage, and CO2 sequestration potential of urban forests in Scotlandville, Louisiana, USA”. IForest. 9 (6): 860–867. 10.3832/ifor1845-009.

[28]    D. R. Williams, F. Alvarado, R. E. Green, A. Manica, B. Phalan, and A. Balmford. (2017). “Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico”. Global Change Biology. 23 (12): 5260–5272. 10.1111/gcb.13791.

[29]    D. Thom and W. S. Keeton. (2019). “Stand structure drives disparities in carbon storage in northern hardwood-conifer forests”. Forest Ecology and Management. 442 : 10–20. 10.1016/j.foreco.2019.03.053.

[30]    Z. Ma, H. Y. H. Chen, E. W. Bork, C. N. Carlyle, and S. X. Chang. (2020). “Carbon accumulation in agroforestry systems is affected by tree species diversity, age and regional climate: A global meta-analysis”. Global Ecology and Biogeography. 29 (10): 1817–1828. 10.1111/geb.13145.

Downloads

Published

2021-01-09

How to Cite

[1]
G. N. Madapuri, H. N. . Azwar, and M. A. . Hasyim, “Estimation of CO2 Absorption, Biomass, and Carbon Deposit the Trees on the Street City of Malang”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 18-24, Jan. 2021.