Development of a Vitamin C Derivative Serum for Pre-Aging Skin: Raw Material Screening, Stability and Clinical Evaluation
DOI:
https://doi.org/10.47352/jmans.2774-3047.292Keywords:
vitamin C, serum, 3-O-ethyl ascorbic acid, aging skin, antioxidantAbstract
Vitamin C (L-ascorbic acid) is a powerful antioxidant widely used in skin care. Its ability to counteract free radicals helps prevent signs of premature aging such as dullness, dark spots, sagging skin, enlarged pores, and wrinkles. However, pure form of vitamin C is difficult to formulate because of limitations in stability and penetration, making its derivatives a preferred alternative. This study aims to develop a pre-aging serum using a stable and potent vitamin C derivative. Screening of various vitamin C derivatives—sodium ascorbyl phosphate, ascorbyl glucoside, 3-O-ethyl ascorbic acid, and 3-glyceryl ascorbate—was conducted by evaluating antioxidant activity and stability. Antioxidant activity was assessed using the DPPH method, while stability was assessed under various conditions: room temperature, 45 °C, 50 °C, −4 °C, sunlight exposure, and xenon lamp irradiation. The most stable and potent derivative was incorporated into a serum formulation, which was further evaluated for its stability and efficacy. Efficacy test was conducted on 39 females under dermatological assessment using Mexameter® MX 18, Cutometer® Dual MPA 580, and Spectrophotometer CM600D, along with photography via Visia-CR and Antera ® 3D CS instruments after 28 days. The 3-O-ethyl ascorbic acid was selected as the best vitamin C derivative. Serum containing 10% 3-O-ethyl ascorbic acid demonstrated excellent stability and significantly reduced dark spots (4.25%), increased skin firmness (20.35%), skin elasticity (R2 3.08%, R5 15.19%, R7 11.55%) and skin brightness (4.49%), reduced pores (9.86%) and skin wrinkles (13.71%). The 3-O-ethyl ascorbic acid serum was proven to be stable, could brighten the skin, and reduced signs of pre-aging.
References
[1] Y. Liang, W. Su, and F. Wang. (2023). "Skin Ageing: A Progressive, Multi-Factorial Condition Demanding an Integrated, Multilayer-Targeted Remedy". Clinical, Cosmetic and Investigational Dermatology. 16 : 1215-1229. 10.2147/CCID.S408765.
DOI: https://doi.org/10.2147/CCID.S408765[2] Q. Y. A. Wong and F. T. Chew. (2021). "Defining skin aging and its risk factors: a systematic review and meta-analysis". Scientific Reports. 11 (1): 22075. 10.1038/s41598-021-01573-z.
DOI: https://doi.org/10.1038/s41598-021-01573-z[3] J. Krutmann, T. Schikowski, A. Morita, and M. Berneburg. (2021). "Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms". Journal of Investigative Dermatology. 141 (4S): 1096-1103. 10.1016/j.jid.2020.12.011.
DOI: https://doi.org/10.1016/j.jid.2020.12.011[4] H. T. Hoang, J.-Y. Moon, and Y.-C. Lee. (2021). "Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives". Cosmetics. 8 (4). 10.3390/cosmetics8040106.
DOI: https://doi.org/10.3390/cosmetics8040106[5] T. Schikowski and A. Huls. (2020). "Air Pollution and Skin Aging". Current Environmental Health Reports. 7 (1): 58-64. 10.1007/s40572-020-00262-9.
DOI: https://doi.org/10.1007/s40572-020-00262-9[6] G. J. Fisher, Z. Q. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees. (1997). "Pathophysiology of premature skin aging induced by ultraviolet light". New England Journal of Medicine. 337 (20): 1419-28. 10.1056/NEJM199711133372003.
DOI: https://doi.org/10.1056/NEJM199711133372003[7] R. D. Pamela. (2020). "Jakarta's Air Pollution, and the New Emerging Cause for Skin Aging". Journal of Dermatology and Skin Science. 2 (1): 34-38.
[8] J. Kumari, K. Das, M. Babaei, G. R. Rokni, and M. Goldust. (2023). "The impact of blue light and digital screens on the skin". Journal of Cosmetic Dermatology. 22 (4): 1185-1190. 10.1111/jocd.15576.
DOI: https://doi.org/10.1111/jocd.15576[9] F. Papaccio, D. A. A, S. Caputo, and B. Bellei. (2022). "Focus on the Contribution of Oxidative Stress in Skin Aging". Antioxidants (Basel). 11 (6). 10.3390/antiox11061121.
DOI: https://doi.org/10.3390/antiox11061121[10] J. Chen, Y. Liu, Z. Zhao, and J. Qiu. (2021). "Oxidative stress in the skin: Impact and related protection". International Journal of Cosmetic Science. 43 (5): 495-509. 10.1111/ics.12728.
DOI: https://doi.org/10.1111/ics.12728[11] X. He, F. Wan, W. Su, and W. Xie. (2023). "Research Progress on Skin Aging and Active Ingredients". Molecules. 28 (14). 10.3390/molecules28145556.
DOI: https://doi.org/10.3390/molecules28145556[12] A. Khalid, Z. Iqbal, S.-U. Rehman, and Z. Yousaf. (2024). "Role of Vitamin C in Skin Aging Mechanism-A Narrative Review". Journal of Health and Rehabilitation Research. 4 (2): 1489-1494. 10.61919/jhrr.v4i2.1078.
DOI: https://doi.org/10.61919/jhrr.v4i2.1078[13] S. Ravetti, C. Clemente, S. Brignone, L. Hergert, D. Allemandi, and S. Palma. (2019). "Ascorbic Acid in Skin Health". Cosmetics. 6 (4). 10.3390/cosmetics6040058.
DOI: https://doi.org/10.3390/cosmetics6040058[14] Y. Zhang, W. Pan, D. Wang, H. Wang, Y. Hou, M. Zou, and H. Piao. (2023). "Solid-in-oil nanodispersion as a novel topical transdermal delivery to enhance stability and skin permeation and retention of hydrophilic drugs l-ascorbic acid". European Journal of Pharmaceutics and Biopharmaceutics. 185 : 82-93. 10.1016/j.ejpb.2023.02.004.
DOI: https://doi.org/10.1016/j.ejpb.2023.02.004[15] I. Golonka, M. Oleksy, A. Junka, A. Matera-Witkiewicz, M. Bartoszewicz, and W. Musial. (2017). "Selected Physicochemical and Biological Properties of Ethyl Ascorbic Acid Compared to Ascorbic Acid". Biological and Pharmaceutical Bulletin. 40 (8): 1199-1206. 10.1248/bpb.b16-00967.
DOI: https://doi.org/10.1248/bpb.b16-00967[16] N. P. Stamford. (2012). "Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives". Journal of Cosmetic Dermatology. 11 (4): 310-7. 10.1111/jocd.12006.
DOI: https://doi.org/10.1111/jocd.12006[17] W. Brand-Williams, M. E. Cuvelier, and C. Berset. (1995). "Use of a free radical method to evaluate antioxidant activity". LWT - Food Science and Technology. 28 (1): 25-30. 10.1016/s0023-6438(95)80008-5.
DOI: https://doi.org/10.1016/S0023-6438(95)80008-5[18] D. Njus, P. M. Kelley, Y. J. Tu, and H. B. Schlegel. (2020). "Ascorbic acid: The chemistry underlying its antioxidant properties". Free Radical Biology and Medicine. 159 : 37-43. 10.1016/j.freeradbiomed.2020.07.013.
DOI: https://doi.org/10.1016/j.freeradbiomed.2020.07.013[19] İ. Gulcin and S. H. Alwasel. (2023). "DPPH Radical Scavenging Assay". Processes. 11 (8). 10.3390/pr11082248.
DOI: https://doi.org/10.3390/pr11082248[20] F. Iliopoulos, B. C. Sil, D. J. Moore, R. A. Lucas, and M. E. Lane. (2019). "3-O-ethyl-l-ascorbic acid: Characterisation and investigation of single solvent systems for delivery to the skin". International Journal of Pharmaceutics: X. 1 : 100025. 10.1016/j.ijpx.2019.100025.
DOI: https://doi.org/10.1016/j.ijpx.2019.100025[21] V. Truffault, N. Gest, C. Garchery, M. Causse, R. Duboscq, G. Riqueau, C. Sauvage, H. Gautier, P. Baldet, and R. Stevens. (2014). "Variation in Tomato Fruit Ascorbate Levels and Consequences of Manipulation of Ascorbate Metabolism on Drought Stress Tolerance". Acta Horticulturae. 1048 : 75-84. 10.17660/ActaHortic.2014.1048.8.
DOI: https://doi.org/10.17660/ActaHortic.2014.1048.8[22] J. Du, J. J. Cullen, and G. R. Buettner. (2012). "Ascorbic acid: chemistry, biology and the treatment of cancer". Biochimica et Biophysica Acta. 1826 (2): 443-57. 10.1016/j.bbcan.2012.06.003.
DOI: https://doi.org/10.1016/j.bbcan.2012.06.003[23] X. Yin, K. Chen, H. Cheng, X. Chen, S. Feng, Y. Song, and L. Liang. (2022). "Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology". Antioxidants (Basel). 11 (1). 10.3390/antiox11010153.
DOI: https://doi.org/10.3390/antiox11010153[24] K. Moribe, W. Limwikrant, K. Higashi, and K. Yamamoto. (2011). "Drug nanoparticle formulation using ascorbic Acid derivatives". Journal of Drug Delivery. 2011 : 138929. 10.1155/2011/138929.
DOI: https://doi.org/10.1155/2011/138929[25] N. A. Thiele, J. McGowan, and K. B. Sloan. (2016). "2-O-Acyl-3-O-(1-acyloxyalkyl) Prodrugs of 5,6-Isopropylidene-l-Ascorbic Acid and l-Ascorbic Acid: Antioxidant Activity and Ability to Permeate Silicone Membranes". Pharmaceutics. 8 (3). 10.3390/pharmaceutics8030022.
DOI: https://doi.org/10.3390/pharmaceutics8030022[26] S. R. Pinnell, H. Yang, M. Omar, N. Monteiro-Riviere, H. V. DeBuys, L. C. Walker, Y. Wang, and M. Levine. (2001). "Topical L-ascorbic acid: percutaneous absorption studies". Dermatologic Surgery. 27 (2): 137-42. 10.1046/j.1524-4725.2001.00264.x.
DOI: https://doi.org/10.1046/j.1524-4725.2001.00264.x[27] G. Theophilus Kureh, A. Ndesangia, R. D. Opio, I. O. Umoh, J. O. Aruwa, and G. A. Okoruwa. (2020). "Use of Cosmetic Products and Related Adverse Reactions among Health Science Students". Journal of Young Pharmacists. 12 (3): 271-274. 10.5530/jyp.2020.12.74.
DOI: https://doi.org/10.5530/jyp.2020.12.74[28] B. Enaru, G. Dretcanu, T. D. Pop, A. Stanila, and Z. Diaconeasa. (2021). "Anthocyanins: Factors Affecting Their Stability and Degradation". Antioxidants (Basel). 10 (12). 10.3390/antiox10121967.
DOI: https://doi.org/10.3390/antiox10121967[29] P. M. Nair, M. A. Meledeo, A. R. Wells, X. Wu, J. A. Bynum, K. P. Leung, B. Liu, A. Cheeniyil, A. K. Ramasubramanian, J. W. Weisel, and A. P. Cap. (2021). "Cold-stored platelets have better preserved contractile function in comparison with room temperature-stored platelets over 21 days". Transfusion. 61 Suppl 1 : S68-S79. 10.1111/trf.16530.
DOI: https://doi.org/10.1111/trf.16530[30] P. S. Telang. (2013). "Vitamin C in dermatology". Indian Dermatology Online Journal. 4 (2): 143-6. 10.4103/2229-5178.110593.
DOI: https://doi.org/10.4103/2229-5178.110593[31] V. Gupta, S. Mohapatra, H. Mishra, U. Farooq, K. Kumar, M. J. Ansari, M. F. Aldawsari, A. S. Alalaiwe, M. A. Mirza, and Z. Iqbal. (2022). "Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements". Gels. 8 (3). 10.3390/gels8030173.
DOI: https://doi.org/10.3390/gels8030173[32] H. Kojima, T. Nakada, A. Yagami, H. Todo, J. Nishimura, M. Yagi, M. Sugiyama, K. Yamamoto, Y. Ikarashi, H. Sakaguchi, M. Yamaguchi, M. Hirota, H. Ikeda, N. Imai, and M. Hatao. (2021). "A Step-by-Step Approach for Assessing Human Skin Irritation Without Animal Testing for Quasi-Drugs and Cosmetic Products". Applied In Vitro Toxicology. 7 (3): 144-154. 10.1089/aivt.2021.0016.
DOI: https://doi.org/10.1089/aivt.2021.0016[33] A. Sucontphunt, T. Chusut, T. Wannakup, P. Chetprayoon, and L. Charoenchai. (2024). "Skin irritation of capsicum patches by in vitro study and human repeated insult patch test". The Thai Journal of Pharmaceutical Sciences. 48 (1). 10.56808/3027-7922.2860.
DOI: https://doi.org/10.56808/3027-7922.2860[34] K. J. Gromkowska-Kepka, A. Puscion-Jakubik, R. Markiewicz-Zukowska, and K. Socha. (2021). "The impact of ultraviolet radiation on skin photoaging - review of in vitro studies". Journal of Cosmetic Dermatology. 20 (11): 3427-3431. 10.1111/jocd.14033.
DOI: https://doi.org/10.1111/jocd.14033[35] S. J. Lee, J. Seok, S. Y. Jeong, K. Y. Park, K. Li, and S. J. Seo. (2016). "Facial Pores: Definition, Causes, and Treatment Options". Dermatologic Surgery. 42 (3): 277-85. 10.1097/DSS.0000000000000657.
DOI: https://doi.org/10.1097/DSS.0000000000000657[36] X. Chen, C. Yang, and G. Jiang. (2021). "Research progress on skin photoaging and oxidative stress". Postepy Dermatologii I Alergologii. 38 (6): 931-936. 10.5114/ada.2021.112275.
DOI: https://doi.org/10.5114/ada.2021.112275[37] R. Costa and L. Santos. (2017). "Delivery systems for cosmetics - From manufacturing to the skin of natural antioxidants". Powder Technology. 322 : 402-416. 10.1016/j.powtec.2017.07.086.
DOI: https://doi.org/10.1016/j.powtec.2017.07.086[38] D. B. Abbas, C. V. Lavin, E. J. Fahy, M. Griffin, N. Guardino, M. King, K. Chen, P. H. Lorenz, G. C. Gurtner, M. T. Longaker, A. Momeni, and D. C. Wan. (2022). "Standardizing Dimensionless Cutometer Parameters to Determine In Vivo Elasticity of Human Skin". Advances in Wound Care (New Rochelle). 11 (6): 297-310. 10.1089/wound.2021.0082.
DOI: https://doi.org/10.1089/wound.2021.0082[39] M. C. Kouassi, M. Grisel, and E. Gore. (2022). "Multifunctional active ingredient-based delivery systems for skincare formulations: A review". Colloids and Surfaces B: Biointerfaces. 217 : 112676. 10.1016/j.colsurfb.2022.112676.
DOI: https://doi.org/10.1016/j.colsurfb.2022.112676Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nurani Istiqomah, Hana Mutiara Nirwana, Salma Noor Mulya, Fransisca Fransisca

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.