Visibility, Selectivity, Optimization, and Interaction of Natural Tannin Dye from Ceriops tagal (Perr.) C.B. Rob. Extract for Plant Tissue Staining

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.291

Keywords:

Ceriops tagal, color contrast, natural dye, selectivity, tannin, tissue staining, visibility

Abstract

Tissue staining improves cellular visualization for microscopic analysis. This study explores tannin dye from Ceriops tagal as a sustainable, eco-friendly alternative for plant histology. Its strong affinity to cotton cellulose suggests effective staining potential. The research assesses tissue visibility, mordant specificity, color contrast, and dye–tissue binding interactions. Tissue staining enhances the visualization of cellular structures, facilitating microscopic analysis. Developing safe, cost-effective, and environmentally friendly natural dyes is essential for sustainable histological applications. Tannin dye extracted from C. tagal binds effectively to cotton cellulose, indicating its potential for plant tissue staining. This study evaluates the visibility of stained plant tissues, mordant selectivity, color contrast optimisation, and chemical bonding interactions. The stem sections of sunflower (Helianthus annuus L.) were stained with C. tagal tannin dye. Mordants used included ferrous sulfate (FeSO₄), aluminum sulfate (Al₂(SO₄)₃), and calcium carbonate (CaCO₃), with synthetic safranin serving as a control. Color contrast optimization was performed using response surface methodology (RSM), analyzing dye concentration, immersion duration, and mordant concentration. Color contrast (ΔE) was measured using colorimetry via a smartphone application, while chemical interactions were examined through Fourier transform infrared (FTIR) spectroscopy. The results showed that tannin dye adhered well to plant tissues, producing colors ranging from sepia brown to baker’s chocolate. Al₂(SO₄)₃ produced the highest contrast (ΔE = 79.7). Optimal staining conditions were achieved with 44.233 g/L tannin dye, 73.636 s of immersion, and 110.454 g/L Al₂(SO₄)₃ as the mordant. FTIR analysis revealed bonding interactions, evidenced by peak intensity shifts at 2922 and 1100 cm⁻¹. C. tagal tannin dye demonstrates strong potential as a natural, sustainable plant tissue stain with effective mordant selectivity and contrast. Further research is recommended to expand its application across diverse plant species and to standardize protocols for broader histological use.

References

[1] A. C. Simatupang and A. F. Sitompul. (2018). "Analisis Sarana Dan Prasarana Laboratorium Biologi Dan Pelaksanaan Kegiatan Praktikum Biologi Dalam Mendukung Pembelajaran Biologi Kelas XI". Jurnal Pelita Pendidikan. 6 (2).  10.24114/jpp.v6i2.10148.

DOI: https://doi.org/10.24114/jpp.v6i2.10148

[2] D. K. Meyerholz and A. P. Beck. (2018). "Principles and approaches for reproducible scoring of tissue stains in research". Laboratory Investigation. 98 (7): 844-855. 10.1038/s41374-018-0057-0.

DOI: https://doi.org/10.1038/s41374-018-0057-0

[3] M. Inyushin, D. Meshalkina, L. Zueva, and A. Zayas-Santiago. (2019). "Tissue Transparency In Vivo". Molecules. 24 (13). 10.3390/molecules24132388.

DOI: https://doi.org/10.3390/molecules24132388

[4] A. L. Mescher. (2024). In: "Junqueira's Basic Histology: Text and Atlas, A. L. Mescher Ed". McGraw Hill. 1-5.

[5] J. G. Cappuccino and N. Sherman. (2018). "Microbiology: A Laboratory manual". Pearson.

[6] P. Dey. (2018). In: "Basic and Advanced Laboratory Techniques in Histopathology and Cytology, ch. Chapter 7". 57-67. 10.1007/978-981-10-8252-8_7.

DOI: https://doi.org/10.1007/978-981-10-8252-8_7

[7] A. Iswara. (2017). "Pengaruh variasi waktu clearing terhadap kualitas sediaan awetan permanen Ctenocephalides felis". Jurnal Labora Medika. 1 (1): 12-15. 10.26714/jlabmed.1.1.2017.12-15.

[8] S. Hassdenteufel and M. Schuldiner. (2022). "Show your true color: Mammalian cell surface staining for tracking cellular identity in multiplexing and beyond". Current Opinion in Chemical Biology. 66 : 102102. 10.1016/j.cbpa.2021.102102.

DOI: https://doi.org/10.1016/j.cbpa.2021.102102

[9] Y. Zhang, K. de Haan, Y. Rivenson, J. Li, A. Delis, and A. Ozcan. (2020). "Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue". Light: Science & Applications. 9 : 78. 10.1038/s41377-020-0315-y.

DOI: https://doi.org/10.1038/s41377-020-0315-y

[10] Q. Zhang and W. Liu. (2022). "Transition metal-catalyzed esterification reactions for dye modification: recent developments and future perspectives". Chemical Reviews Journal. 98 (7): 1501-1518. 10.6023/cjoc202201006.

DOI: https://doi.org/10.6023/cjoc202201006

[11] A. Kumar, U. Dixit, K. Singh, S. Prakash Gupta, and M. S. Jamal Beg. (2021). In: " Dyes and Pigments - Novel Applications and Waste Treatment, ch. Chapter 8". 10.5772/intechopen.97104.

DOI: https://doi.org/10.5772/intechopen.97104

[12] L. Aztatzi-Rugerio, S. Y. Granados-Balbuena, Y. Zainos-Cuapio, E. Ocaranza-Sanchez, and M. Rojas-Lopez. (2019). "Analysis of the degradation of betanin obtained from beetroot using Fourier transform infrared spectroscopy". Journal of Food Science and Technology. 56 (8): 3677-3686. 10.1007/s13197-019-03826-2.

DOI: https://doi.org/10.1007/s13197-019-03826-2

[13] F. Baldacci-Cresp, C. Spriet, L. Twyffels, A. S. Blervacq, G. Neutelings, M. Baucher, and S. Hawkins. (2020). "A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification". Plant Journal. 102 (5): 1074-1089. 10.1111/tpj.14675.

DOI: https://doi.org/10.1111/tpj.14675

[14] S. Koivukoski, U. Khan, P. Ruusuvuori, and L. Latonen. (2023). "Unstained Tissue Imaging and Virtual Hematoxylin and Eosin Staining of Histologic Whole Slide Images". Laboratory Investigation. 103 (5): 100070. 10.1016/j.labinv.2023.100070.

DOI: https://doi.org/10.1016/j.labinv.2023.100070

[15] E. N. Azka, A. A. Mandasari, and S. D. Santoso. (2021). "Comparison of Natural Dyes from Telang Flower Extracts (Clitoria ternatea L) as a Substitute for Methylen Blue in Diff Quik Painting". Procedia of Engineering and Life Science. 1 (2).  10.21070/pels.v1i2.990.

DOI: https://doi.org/10.21070/pels.v1i2.990

[16] P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola. (2022). "Methylene blue dye: Toxicity and potential elimination technology from wastewater". Results in Engineering. 16. 10.1016/j.rineng.2022.100678.

DOI: https://doi.org/10.1016/j.rineng.2022.100678

[17] E. O. Alegbe and T. O. Uthman. (2024). "A review of history, properties, classification, applications and challenges of natural and synthetic dyes". Heliyon. 10 (13): e33646. 10.1016/j.heliyon.2024.e33646.

DOI: https://doi.org/10.1016/j.heliyon.2024.e33646

[18] V. V. Yurchenko, F. I. Ingel, L. V. Akhaltseva, M. A. Konyashkina, N. A. Yurtseva, T. A. Nikitina, and E. K. Krivtsova. (2021). "Genotoxic safety of synthetic food colours. Review". Ecological genetics. 19 (4): 323-341. 10.17816/ecogen79399.

DOI: https://doi.org/10.17816/ecogen79399

[19] A. Rane and S. J. Joshi. (2021). "Biodecolorization and Biodegradation of Dyes: A Review". The Open Biotechnology Journal. 15 (1): 97-108. 10.2174/1874070702115010097.

DOI: https://doi.org/10.2174/1874070702115010097

[20] M. Fraga-Corral, P. Garcia-Oliveira, A. G. Pereira, C. Lourenco-Lopes, C. Jimenez-Lopez, M. A. Prieto, and J. Simal-Gandara. (2020). "Technological Application of Tannin-Based Extracts". Molecules. 25 (3). 10.3390/molecules25030614.

DOI: https://doi.org/10.3390/molecules25030614

[21] N. Li, Q. Wang, J. Zhou, S. Li, J. Liu, and H. Chen. (2022). "Insight into the Progress on Natural Dyes: Sources, Structural Features, Health Effects, Challenges, and Potential". Molecules. 27 (10). 10.3390/molecules27103291.

DOI: https://doi.org/10.3390/molecules27103291

[22] S. Sunariyati, S. Suatma, and Y. Miranda. (2019). "Efforts to Improve Scientific Attitude and Preservation of Local Culture through Ethnobiology-Based Biological Practicum". Edusains. 11 (2): 255-263. 10.15408/es.v11i2.13622.

DOI: https://doi.org/10.15408/es.v11i2.13622

[23] R. Noor, N. Y. Tika, and A. Agustina. (2021). "Preparat jaringan tumbuhan dengan menggunakan pewarna alami sebagai media belajar jaringan tumbuhan praktikum biologi sel". Jurnal Lentera Pusat Penelitian LPPM UM Metro. 5 (2): 136-148. 10.24127/jlpp.v5i2.1547.

[24] V. Seithtanabutara, N. Chumwangwapee, A. Suksri, and T. Wongwuttanasatian. (2023). "Potential investigation of combined natural dye pigments extracted from ivy gourd leaves, black glutinous rice and turmeric for dye-sensitised solar cell". Heliyon. 9 (11): e21533. 10.1016/j.heliyon.2023.e21533.

DOI: https://doi.org/10.1016/j.heliyon.2023.e21533

[25] S. Yadav, K. S. Tiwari, C. Gupta, M. K. Tiwari, A. Khan, and S. P. Sonkar. (2023). "A brief review on natural dyes, pigments: Recent advances and future perspectives". Results in Chemistry. 5. 10.1016/j.rechem.2022.100733.

DOI: https://doi.org/10.1016/j.rechem.2022.100733

[26] L. Chungkrang, S. Bhuyan, and A. R. Phukan. (2021). "Natural Dyes: Extraction and Applications". International Journal of Current Microbiology and Applied Sciences. 10 (01): 1669-1677. 10.20546/ijcmas.2021.1001.195.

DOI: https://doi.org/10.20546/ijcmas.2021.1001.195

[27] M. M. Rahman, M. Kim, K. Youm, S. Kumar, J. Koh, and K. H. Hong. (2023). "Sustainable one-bath natural dyeing of cotton fabric using turmeric root extract and chitosan biomordant". Journal of Cleaner Production. 38210.1016/j.jclepro.2022.135303.

DOI: https://doi.org/10.1016/j.jclepro.2022.135303

[28] K. B. Erande, P. Y. Hawaldar, S. R. Suryawanshi, B. M. Babar, A. A. Mohite, H. D. Shelke, S. V. Nipane, and U. T. Pawar. (2021). "Extraction of natural dye (specifically anthocyanin) from pomegranate fruit source and their subsequent use in DSSC". Materials Today: Proceedings. 43 : 2716-2720. 10.1016/j.matpr.2020.06.357.

DOI: https://doi.org/10.1016/j.matpr.2020.06.357

[29] B. Arjun Kumar, G. Ramalingam, D. Karthigaimuthu, T. Elangovan, and V. Vetrivelan. (2022). "Fabrication of natural dye sensitized solar cell using tridax procumbens leaf and beetroot extract mixer as a sensitizer". Materials Today: Proceedings. 49 : 2541-2545. 10.1016/j.matpr.2021.04.221.

DOI: https://doi.org/10.1016/j.matpr.2021.04.221

[30] M. N. Singh, R. Srivastava, and D. I. Yadav. (2021). "Study of different varietis of carrot and its benefits for human health: A review". Journal of Pharmacognosy and Phytochemistry. 10 (1): 1293-1299. 10.22271/phyto.2021.v10.i1r.13529.

DOI: https://doi.org/10.22271/phyto.2021.v10.i1r.13529

[31] S. P. Moulick, F. Jahan, M. B. Islam, M. A. Bashera, M. S. Hasan, M. J. Islam, S. Ahmed, D. Karmakar, F. Ahmed, T. Saha, S. S. Dey, F. Boby, M. Saha, B. K. Saha, and M. N. H. Bhuiyan. (2023). "Nutritional characteristics and antiradical activity of turmeric (Curcuma longa L.), beetroot (Beta vulgaris L.), and carrot (Daucus carota L.) grown in Bangladesh". Heliyon. 9 (11): e21495. 10.1016/j.heliyon.2023.e21495.

DOI: https://doi.org/10.1016/j.heliyon.2023.e21495

[32] H. Wagiyanti and R. Noor. (2017). "Red dragon fruit (Hylocereus costaricensis Britt. Et R.) peel extract as a natural dye alternative in microscopic observation of plant tissues: The practical guide in senior high school". JPBI (Jurnal Pendidikan Biologi Indonesia). 3 (3): 232-237. 10.22219/jpbi.v3i3.4843.

DOI: https://doi.org/10.22219/jpbi.v3i3.4843

[33] D. Pintać, K. Bekvalac, N. Mimica-Dukić, M. Rašeta, N. Anđelić, M. Lesjak, and D. Orčić. (2022). "Comparison study between popular brands of coffee, tea and red wine regarding polyphenols content and antioxidant activity". Food Chemistry Advances. 110.1016/j.focha.2022.100030.

DOI: https://doi.org/10.1016/j.focha.2022.100030

[34] A. Haji and M. Rahimi. (2020). "RSM Optimization of Wool Dyeing withBerberis ThunbergiiDC Leaves as a New Source of Natural Dye". Journal of Natural Fibers. 19 (8): 2785-2798. 10.1080/15440478.2020.1821293.

DOI: https://doi.org/10.1080/15440478.2020.1821293

[35] Z. Omerogullari Basyigit, C. Eyupoglu, S. Eyupoglu, and N. Merdan. (2023). "Investigation and feed‐forward neural network‐based estimation of dyeing properties of air plasma treated wool fabric dyed with natural dye obtained from Hibiscus sabdariffa". Coloration Technology. 139 (4): 441-453. 10.1111/cote.12665.

DOI: https://doi.org/10.1111/cote.12665

[36] M. N. Bukhari, M. A. Wani, M. Fatima, J. S. S. Bukhari, M. Shabbir, L. J. Rather, and F. Mohammad. (2023). "Dyeing of Wool with Sappan Wood Natural Dye Using Metal Salts for Enhancement in Color and Fastness Properties". Journal of Natural Fibers. 20 (2). 10.1080/15440478.2023.2208890.

DOI: https://doi.org/10.1080/15440478.2023.2208890

[37] Z. Romdhani, N. Sakji, and M. Hamdaoui. (2022). "Eco-Friendly Dyeing of Wool Fabrics with Natural Dye Extracted from Citrus Sinensis L Peels". Fibers and Polymers. 23 (6): 1621-1630. 10.1007/s12221-022-4478-4.

DOI: https://doi.org/10.1007/s12221-022-4478-4

[38] E. Rahayuningsih, A. Mindaryani, D. T. Adriyanti, L. D. Parthasiwi, H. P Adina, and A. E Dyah. (2020). "Conceptual Design of a Process Plant for the Production of Natural Dye from Merbau (Intsia bijuga) Bark". IOP Conference Series: Materials Science and Engineering. 778 (1). 10.1088/1757-899x/778/1/012045.

DOI: https://doi.org/10.1088/1757-899X/778/1/012045

[39] A. Smeriglio, D. Barreca, E. Bellocco, and D. Trombetta. (2017). "Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects". British Journal of Pharmacology. 174 (11): 1244-1262. 10.1111/bph.13630.

DOI: https://doi.org/10.1111/bph.13630

[40] R. Räisänen, A. Primetta, P. Toukola, S. Fager, and J. Ylänen. (2023). "Biocolourants from onion crop side streams and forest mushroom for regenerated cellulose fibres". Industrial Crops and Products. 198. 10.1016/j.indcrop.2023.116748.

DOI: https://doi.org/10.1016/j.indcrop.2023.116748

[41] A. K. Das, M. N. Islam, M. O. Faruk, M. Ashaduzzaman, and R. Dungani. (2020). "Review on tannins: Extraction processes, applications and possibilities". South African Journal of Botany. 135 : 58-70. 10.1016/j.sajb.2020.08.008.

DOI: https://doi.org/10.1016/j.sajb.2020.08.008

[42] S. Saxena and A. S. M. Raja. (2014). In: "Roadmap to Sustainable Textiles and Clothing, (Textile Science and Clothing Technology, ch. Chapter 2". 37-80. 10.1007/978-981-287-065-0_2.

DOI: https://doi.org/10.1007/978-981-287-065-0_2

[43] S. Gala, S. Sumarno, and M. Mahfud. (2020). "Comparison of microwave and conventional extraction methods for natural dyes in wood waste of mahogany (Swietenia mahagoni)". Journal of Applied Engineering Science. 18 (4): 618-623. 10.5937/jaes0-23695.

DOI: https://doi.org/10.5937/jaes0-23695

[44] M. L. R. Liman, M. T. Islam, M. M. Hossain, P. Sarker, and M. R. Repon. (2021). "Environmentally benign dyeing mechanism of knitted cotton fabric with condensed and hydrolyzable tannin derivatives enriched bio-waste extracts". Environmental Technology & Innovation. 23. 10.1016/j.eti.2021.101621.

DOI: https://doi.org/10.1016/j.eti.2021.101621

[45] S. Bahri. (2020). "Ekstraksi Kulit Batang Nangka menggunakan Air untuk Pewarna Alami Tekstil". Jurnal Teknologi Kimia Unimal. 8 (2): 73-88. 10.29103/jtku.v8i2.2683.

DOI: https://doi.org/10.29103/jtku.v8i2.2683

[46] E. Rahayuningsih, T. Marfitania, T. Marfitania, M. Sapto Pamungkas, M. S. Pamungkas, W. Siti Fatimah, and W. S. Fatimah. (2022). "Optimization of cotton fabrics dyeing process using various natural dye extracts". Jurnal Rekayasa Proses. 16 (1). 10.22146/jrekpros.70397.

DOI: https://doi.org/10.22146/jrekpros.70397

[47] Y. Ozogul, Y. Ucar, E. E. Tadesse, N. Rathod, P. Kulawik, M. Trif, T. Esatbeyoglu, and F. Ozogul. (2025). "Tannins for food preservation and human health: A review of current knowledge". Applied Food Research. 5 (1). 10.1016/j.afres.2025.100738.

DOI: https://doi.org/10.1016/j.afres.2025.100738

[48] A. Pattiya. (2018). In: "Direct Thermochemical Liquefaction for Energy Applications". 3-28. 10.1016/b978-0-08-101029-7.00001-1.

DOI: https://doi.org/10.1016/B978-0-08-101029-7.00001-1

[49] L. Wang, H. Ren, S. Zhai, and H. Zhai. (2021). "Anatomy and cell wall ultrastructure of sunflower stalk rind". Journal of Wood Science. 67 (1). 10.1186/s10086-021-02001-6.

DOI: https://doi.org/10.1186/s10086-021-02001-6

[50] G. S. Girolami, T. B. Rauchfuss, and R. J. Angelici. (1999). "Synthesis and technique in inorganic chemistry: a laboratory manual". Publisher University Science Books.

[51] F. H. Schweingruber and A. Börner. (2018). In: "The Plant Stem, ch. Chapter 2". 3-5. 10.1007/978-3-319-73524-5_2.

DOI: https://doi.org/10.1007/978-3-319-73524-5_2

[52] D. C. Montgomery. (2012). "Design and Analysis of Experiments". John Wiley & Sons, New York.

[53] K. Sinha, P. D. Saha, and S. Datta. (2012). "Response surface optimization and artificial neural network modeling of microwave assisted natural dye extraction from pomegranate rind". Industrial Crops and Products. 37 (1): 408-414. 10.1016/j.indcrop.2011.12.032.

DOI: https://doi.org/10.1016/j.indcrop.2011.12.032

[54] S. Trivedi, V. Belgamwar, K. Wadher, and M. Umekar. (2022). "Development and Validation of a UV Spectrophotometric Method for the Estimation of the Synthesized Lentinan–Congo Red Complex". Journal of Applied Spectroscopy. 89 (2): 344-349. 10.1007/s10812-022-01364-y.

DOI: https://doi.org/10.1007/s10812-022-01364-y

[55] K. B. Patel, S. Mukherjee, H. Bhatt, D. Rajani, I. Ahmad, H. Patel, and P. Kumari. (2023). "Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents". Journal of Molecular Structure. 1276. 10.1016/j.molstruc.2022.134755.

DOI: https://doi.org/10.1016/j.molstruc.2022.134755

[56] Y. Soda and E. Bakker. (2019). "Quantification of Colorimetric Data for Paper-Based Analytical Devices". ACS Sensors. 4 (12): 3093-3101. 10.1021/acssensors.9b01802.

DOI: https://doi.org/10.1021/acssensors.9b01802

[57] Y. Sirisathitkul and S. Kaewareelap. (2021). "Color Analysis of Batik Fabric by Facile Smartphone Colorimetry". International Journal on Advanced Science, Engineering and Information Technology. 11 (1): 84-91. 10.18517/ijaseit.11.1.11480.

DOI: https://doi.org/10.18517/ijaseit.11.1.11480

[58] L. Ciaccheri, B. Adinolfi, A. A. Mencaglia, and A. G. Mignani. (2023). "Smartphone-Enabled Colorimetry". Sensors (Basel). 23 (12). 10.3390/s23125559.

DOI: https://doi.org/10.3390/s23125559

[59] O. F. Fagbohun, J. P. M. Hui, J. Zhang, G. Jiao, and H. P. V. Rupasinghe. (2024). "Application of response surface methodology and artificial neural network to optimize the extraction of saponins and polyphenols from North Atlantic sea cucumber". Food Chemistry Advances. 5. 10.1016/j.focha.2024.100748.

DOI: https://doi.org/10.1016/j.focha.2024.100748

[60] Luftinor, N. Herlina, and A. Santika Kurniati. (2020). "Coffee bean skin waste extraction for silk dyeing". IOP Conference Series: Materials Science and Engineering. 801 (1). 10.1088/1757-899x/801/1/012075.

DOI: https://doi.org/10.1088/1757-899X/801/1/012075

[61] M. M. Hassan. (2024). "Valorisation of sulphonated lignin as a dye for the sustainable colouration of wool fabric using sustainable mordanting agents: enhanced colour yield, colourfastness, and functional properties". RSC Sustainability. 2 (3): 676-685. 10.1039/d3su00402c.

DOI: https://doi.org/10.1039/D3SU00402C

[62] K. Liao, L. Han, Z. Yang, Y. Huang, S. Du, Q. Lyu, Z. Shi, and S. Shi. (2022). "A novel in-situ quantitative profiling approach for visualizing changes in lignin and cellulose by stained micrographs". Carbohydrate Polymers. 297 : 119997. 10.1016/j.carbpol.2022.119997.

DOI: https://doi.org/10.1016/j.carbpol.2022.119997

[63] J. N. Chakraborty and J. N. Chakraborty.(2015)." Fundamentals and Practices in Colouration of Textiles. 10.1201/b18243.

DOI: https://doi.org/10.1201/b18243

[64] M. Tehrani, F. S. Ghaheh, Z. T. Beni, and M. Rahimi. (2023). "Extracted dyes' stability as obtained from spent coffee grounds on silk fabrics using eco-friendly mordants". Environmental Science and Pollution Research. 30 (26): 68625-68635. 10.1007/s11356-023-27157-0.

DOI: https://doi.org/10.1007/s11356-023-27157-0

[65] A. Darmawan, Widowati, A. Riyadi, H. Muhtar, Kartono, and S. Adhy. (2024). "Enhancing cotton fabric dyeing: Optimizing Mordanting with natural dyes and citric acid". International Journal of Biological Macromolecules. 276 (Pt 2): 134017. 10.1016/j.ijbiomac.2024.134017.

DOI: https://doi.org/10.1016/j.ijbiomac.2024.134017

[66] D. W. Lestari, V. Atika, Y. Satria, A. Fitriani, and T. Susanto. (2020). "Aplikasi Mordan Tanin pada Pewarnaan Kain Batik Katun Menggunakan Warna Alam Tingi (Ceriops tagal)". Jurnal Rekayasa Proses. 14 (2). 10.22146/jrekpros.57891.

DOI: https://doi.org/10.22146/jrekpros.57891

[67] Ö. E. İşmal and L. Yıldırım. (2019). In: "The Impact and Prospects of Green Chemistry for Textile Technology". 57-82. 10.1016/b978-0-08-102491-1.00003-4.

DOI: https://doi.org/10.1016/B978-0-08-102491-1.00003-4

[68] J. M. Jabar, T. E. Adedayo, and Y. A. Odusote. (2021). "Green, eco-friendly and sustainable alternative in dyeing cotton fabric using aqueous extract Mucuna slonaei F dye: effects of metal salts pre-mordanting on color strength and fastness properties". Current Research in Green and Sustainable Chemistry. 410.1016/j.crgsc.2021.100151.

DOI: https://doi.org/10.1016/j.crgsc.2021.100151

[69] S. Ningsih and T. Harmawan. (2022). "Pengaruh Penambahan Al2(SO4)3 Terhadap Derajat Keasaman Air Baku pada Perusahaan Daerah Air Minum (PDAM) Tirta Keumueneng Langsa". QUIMICA: Jurnal Kimia Sains dan Terapan. 4 (1): 20-23. 10.33059/jq.v4i1.4317.

DOI: https://doi.org/10.33059/jq.v4i1.4317

[70] M. Dakhem, F. Ghanati, M. Afshar Mohammadian, and M. Sharifi. (2022). "Tea leaves, efficient biosorbent for removal of Al3+ from drinking water". International Journal of Environmental Science and Technology. 19 (11): 10985-10998. 10.1007/s13762-022-04313-6.

DOI: https://doi.org/10.1007/s13762-022-04313-6

[71] S. Wan, Z. Ma, Y. Xue, M. Ma, S. Xu, L. Qian, and Q. Zhang. (2014). "Sorption of Lead(II), Cadmium(II), and Copper(II) Ions from Aqueous Solutions Using Tea Waste". Industrial & Engineering Chemistry Research. 53 (9): 3629-3635. 10.1021/ie402510s.

DOI: https://doi.org/10.1021/ie402510s

[72] H. P. S. Abdul Khalil, A. F. I. Yusra, A. H. Bhat, and M. Jawaid. (2010). "Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber". Industrial Crops and Products. 31 (1): 113-121. 10.1016/j.indcrop.2009.09.008.

DOI: https://doi.org/10.1016/j.indcrop.2009.09.008

[73] N. Ain, S. A. Sarah, N. Azmi, A. Bujang, and S. R. Ab Mutalib. (2023). "Response surface methodology (RSM) identifies the lowest amount of chicken plasma protein (CPP) in surimi-based products with optimum protein solubility, cohesiveness, and whiteness". CyTA - Journal of Food. 21 (1): 646-655. 10.1080/19476337.2023.2272627.

DOI: https://doi.org/10.1080/19476337.2023.2272627

[74] D. J. Cosgrove. (2005). "Growth of the plant cell wall". Nature Reviews Molecular Cell Biology. 6 (11): 850-61. 10.1038/nrm1746.

DOI: https://doi.org/10.1038/nrm1746

[75] A. O. Özdemir, B. Caglar, O. Çubuk, F. Coldur, M. Kuzucu, E. K. Guner, B. Doğan, S. Caglar, and K. V. Özdokur. (2022). "Facile synthesis of TiO2-coated cotton fabric and its versatile applications in photocatalysis, pH sensor and antibacterial activities". Materials Chemistry and Physics. 287. 10.1016/j.matchemphys.2022.126342.

DOI: https://doi.org/10.1016/j.matchemphys.2022.126342

[76] P. H. F. Pereira, S. A. Costa, S. M. Costa, and V. Arantes. (2025). "Efficient production of lignin nanoparticle colloids and their feasibility for eco-friendly dyeing of natural and synthetic textile fabrics". Industrial Crops and Products. 22510.1016/j.indcrop.2024.120390.

DOI: https://doi.org/10.1016/j.indcrop.2024.120390

[77] S. Liu, W. Ji, T. Wu, Y. He, Y. Huang, Y. Yu, and W. Yu. (2024). "Unraveling the Intricate Interaction: Bonding Mechanism between Tannic Acid and Wood Fibers". ACS Sustainable Chemistry & Engineering. 12 (10): 4224-4235. 10.1021/acssuschemeng.3c08010.

DOI: https://doi.org/10.1021/acssuschemeng.3c08010

[78] A. Lisý, A. Ház, R. Nadányi, M. Jablonský, and I. Šurina. (2022). "About Hydrophobicity of Lignin: A Review of Selected Chemical Methods for Lignin Valorisation in Biopolymer Production". Energies. 15 (17). 10.3390/en15176213.

DOI: https://doi.org/10.3390/en15176213

[79] Z. Yu and Z. Yang. (2020). "Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function". Critical Reviews in Food Science and Nutrition. 60 (5): 844-858. 10.1080/10408398.2018.1552245.

DOI: https://doi.org/10.1080/10408398.2018.1552245

Downloads

Published

2025-08-09

How to Cite

[1]
R. Noor, M. Maryani, B. Retnoaji, and E. Rahayuningsih, “Visibility, Selectivity, Optimization, and Interaction of Natural Tannin Dye from Ceriops tagal (Perr.) C.B. Rob. Extract for Plant Tissue Staining”, J. Multidiscip. Appl. Nat. Sci., Aug. 2025.

Issue

Section

Articles

Funding data