Preparation and Characterization of Cellulose-clay Composite using Indonesian Natural Bentonite for Cr(VI) Adsorption
DOI:
https://doi.org/10.47352/jmans.2774-3047.289Keywords:
adsorption, bentonite, cellulose, Freundlich, montmorilloniteAbstract
Contamination of Cr(VI) is of global concern, whereas the innovation in wastewater treatment is required. Combination of bentonite and cellulose could produce an effective adsorbent to treat Cr(VI)-containing wastewater. The aim of this study was to investigate the use of composite bentonite/cellulose (B/Cell) to remove Cr(VI) in the aqueous media, in which the bentonite was collected from local sources. The Na-bentonite was firstly prepared before proceeding to cellulose embedment. The resultant B/Cell was characterized for its functional groups, morphology, and crystallinity. The Cr(VI) adsorption capacity and removal efficiency were determined based on batch adsorption. Our findings revealed that the B/Cell composite with a 4:1 bentonite-to-cellulose mass ratio exhibited the highest removal efficiency (85.68%) among tested formulations. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analyses confirmed the successful integration of cellulose and structural modification of bentonite. Optimal adsorption was achieved at pH 3, 180-min contact time, and 10 g/L adsorbent dosage. Isotherm modeling showed excellent fits for Sips (R2 = 0.9992) model, with maximum adsorption capacity reaching 192.56 mg/g. Kinetic analysis indicated pseudo-second-order kinetics (R2 = 0.959, qe = 1.018 mg/g), suggesting a chemisorption mechanism. These results highlight the potential of the B/Cell composite as an efficient and low-cost adsorbent for Cr(VI) removal from aqueous environments.
References
[1] J. J. Coetzee, N. Bansal, and E. M. N. Chirwa. (2018). "Chromium in Environment, Its Toxic Effect from Chromite-Mining and Ferrochrome Industries, and Its Possible Bioremediation". Exposure and Health. 12 (1): 51-62. 10.1007/s12403-018-0284-z.
DOI: https://doi.org/10.1007/s12403-018-0284-z[2] J. Liang, X. Huang, J. Yan, Y. Li, Z. Zhao, Y. Liu, J. Ye, and Y. Wei. (2021). "A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater". Science of The Total Environment. 774. 10.1016/j.scitotenv.2021.145762.
DOI: https://doi.org/10.1016/j.scitotenv.2021.145762[3] E. Vasileiou, P. Papazotos, D. Dimitrakopoulos, and M. Perraki. (2021). "Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece". Water. 13 (20). 10.3390/w13202809.
DOI: https://doi.org/10.3390/w13202809[4] T. Ahmad, K. Ahmad, Z. I. Khan, Z. Munir, A. Khalofah, R. N. Al-Qthanin, M. S. Alsubeie, S. Alamri, M. Hashem, S. Farooq, M. M. Maqbool, S. Hashim, and Y. F. Wang. (2021). "Chromium accumulation in soil, water and forage samples in automobile emission area". Saudi Journal of Biological Sciences. 28 (6): 3517-3522. 10.1016/j.sjbs.2021.03.020.
DOI: https://doi.org/10.1016/j.sjbs.2021.03.020[5] D. Karunanidhi, P. Aravinthasamy, T. Subramani, D. Kumar, and G. Venkatesan. (2021). "Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India". Environmental Research. 199 : 111238. 10.1016/j.envres.2021.111238.
DOI: https://doi.org/10.1016/j.envres.2021.111238[6] S. Prasad, K. K. Yadav, S. Kumar, N. Gupta, M. M. S. Cabral-Pinto, S. Rezania, N. Radwan, and J. Alam. (2021). "Chromium contamination and effect on environmental health and its remediation: A sustainable approaches". Journal of Environmental Management. 285 : 112174. 10.1016/j.jenvman.2021.112174.
DOI: https://doi.org/10.1016/j.jenvman.2021.112174[7] G. Gorbi, M. Invidia, C. Zanni, A. Torelli, and M. G. Corradi. (2004). "Bioavailability, bioaccumulation and tolerance of chromium: consequences in the food chain of freshwater ecosystems". Annales de Chimie. 94 (7-8): 505-13. 10.1002/adic.200490064.
DOI: https://doi.org/10.1002/adic.200490064[8] K. Ahmad, M. Iqhrammullah, D. R. Rizki, A. Aulia, A. Q. Mairizal, A. Purnama, I. Qanita, S. N. Abdulmadjid, and K. Puspita. (2022). "Heavy Metal Contamination in Aquatic and Terrestrial Animals Resulted from Anthropogenic Activities in Indonesia: A Review". Asian Journal of Water, Environment and Pollution. 19 (4): 1-8. 10.3233/ajw220049.
DOI: https://doi.org/10.3233/AJW220049[9] Y. Pratama, M. Kadir, A. Rivaldi, I. Mulya, S. Amirah, and M. Iqhrammullah. (2024). "Bibliometric analysis of the impact of environmental degradation on women and the importance of women’s representation". Global Journal of Environmental Science and Management.
[10] M. Iqhrammullah, R. Y. Refin, R. I. Rasmi, F. F. Andika, H. Hajjah, M. Marlina, and R. Ningsih. (2023). "Cancer in Indonesia: A bibliometric surveillance". Narra X. 1 (2). 10.52225/narrax.v1i2.86.
DOI: https://doi.org/10.52225/narrax.v1i2.86[11] J. Julinawati, F. Febriani, I. Mustafa, F. Fathurrahmi, R. Rahmi, S. Sheilatina, K. Ahmad, K. Puspita, and M. Iqhrammullah. (2023). "Tryptophan-Based Organoclay for Aqueous Naphthol Blue Black Removal – Preparation, Characterization, and Batch Adsorption Studies". Journal of Ecological Engineering. 24 (7): 274-284. 10.12911/22998993/165781.
DOI: https://doi.org/10.12911/22998993/165781[12] K. Ahmad and W. Chiari. (2023). "Metal oxide/chitosan composite for organic pollutants removal: A comprehensive review with bibliometric analysis". Narra X. 1 (2). 10.52225/narrax.v1i2.91.
DOI: https://doi.org/10.52225/narrax.v1i2.91[13] J. D. Castro-Castro, I. F. Macias-Quiroga, G. I. Giraldo-Gomez, and N. R. Sanabria-Gonzalez. (2020). "Adsorption of Cr(VI) in Aqueous Solution Using a Surfactant-Modified Bentonite". ScientificWorldJournal. 2020 : 3628163. 10.1155/2020/3628163.
[14] G. Lemessa, Y. Chebude, and E. Alemayehu. (2023). "Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite". AQUA — Water Infrastructure, Ecosystems and Society. 72 (12): 2239-2261. 10.2166/aqua.2023.132.
DOI: https://doi.org/10.2166/aqua.2023.132[15] A. Rahman, K. Yoshida, M. M. Islam, and G. Kobayashi. (2023). "Investigation of Efficient Adsorption of Toxic Heavy Metals (Chromium, Lead, Cadmium) from Aquatic Environment Using Orange Peel Cellulose as Adsorbent". Sustainability. 15 (5). 10.3390/su15054470.
DOI: https://doi.org/10.3390/su15054470[16] Q. Wu, H. He, H. Zhou, F. Xue, H. Zhu, S. Zhou, L. Wang, and S. Wang. (2020). "Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms". Carbohydrate Polymers. 233 : 115860. 10.1016/j.carbpol.2020.115860.
DOI: https://doi.org/10.1016/j.carbpol.2020.115860[17] C. Soloviy, M. Malovanyy, O. Palamarchuk, I. Trach, H. Petruk, H. Sakalova, T. Vasylinych, and N. Vronska. (2021). "Adsorption method of purification of stocks from chromium(III) ions by bentonite clays". Journal of Water and Land Development. 99-104. 10.24425/jwld.2021.136152.
DOI: https://doi.org/10.24425/jwld.2021.136152[18] S. J. Priatna, Y. M. Hakim, S. Wibyan, S. Sailah, and R. Mohadi. (2023). "Interlayer Modification of West Java Natural Bentonite as Hazardous Dye Rhodamine B Adsorption". Science and Technology Indonesia. 8 (2): 160-169. 10.26554/sti.2023.8.2.160-169.
DOI: https://doi.org/10.26554/sti.2023.8.2.160-169[19] A. L. Obsa, N. T. Shibeshi, E. Mulugeta, and G. A. Workeneh. (2024). "Bentonite/amino-functionalized cellulose composite as effective adsorbent for removal of lead: Kinetic and isotherm studies". Results in Engineering. 21. 10.1016/j.rineng.2024.101756.
DOI: https://doi.org/10.1016/j.rineng.2024.101756[20] J. Jia, Y. Liu, and S. Sun. (2021). "Preparation and Characterization of Chitosan/Bentonite Composites for Cr (VI) Removal from Aqueous Solutions". Adsorption Science & Technology. 2021 : 6681486. 10.1155/2021/6681486.
[21] Z. Deng, Z. Wu, Q. Wu, J. Yu, C. Zou, H. Deng, P. Jin, and D. Fang. (2024). "Cellulose nanocrystals intercalated clay biocomposite for rapid Cr(VI) removal". Environmental Science and Pollution Research. 31 (20): 29719-29729. 10.1007/s11356-024-33066-7.
DOI: https://doi.org/10.1007/s11356-024-33066-7[22] J. Yang, B. Huang, and M. Lin. (2020). "Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies". Journal of Chemical & Engineering Data. 65 (5): 2751-2763. 10.1021/acs.jced.0c00085.
DOI: https://doi.org/10.1021/acs.jced.0c00085[23] R. Tang, Z. Wang, Y. Muhammad, H. Shi, K. Liu, J. Ji, Y. Zhu, Z. Tong, and H. Zhang. (2021). "Fabrication of carboxymethyl cellulose and chitosan modified Magnetic alkaline Ca-bentonite for the adsorption of hazardous doxycycline". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 610. 10.1016/j.colsurfa.2020.125730.
DOI: https://doi.org/10.1016/j.colsurfa.2020.125730[24] R. D. Fan, K. R. Reddy, Y. L. Yang, and Y. J. Du. (2020). "Index Properties, Hydraulic Conductivity and Contaminant-Compatibility of CMC-Treated Sodium Activated Calcium Bentonite". International Journal of Environmental Research and Public Health. 17 (6). 10.3390/ijerph17061863.
DOI: https://doi.org/10.3390/ijerph17061863[25] Y. Chen, Z. Nie, J. Gao, J. Wang, and M. Cai. (2021). "A novel adsorbent of bentonite modified chitosan-microcrystalline cellulose aerogel prepared by bidirectional regeneration strategy for Pb(II) removal". Journal of Environmental Chemical Engineering. 9 (4). 10.1016/j.jece.2021.105755.
DOI: https://doi.org/10.1016/j.jece.2021.105755[26] S. P. Santoso, A. Kurniawan, F. E. Soetaredjo, K.-C. Cheng, J. N. Putro, S. Ismadji, and Y.-H. Ju. (2019). "Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture". Cellulose. 26 (5): 3339-3358. 10.1007/s10570-019-02314-2.
DOI: https://doi.org/10.1007/s10570-019-02314-2[27] S. Cukrowicz, B. Grabowska, K. Kaczmarska, A. Bobrowski, M. Sitarz, and B. Tyliszczak. (2020). "Structural Studies (FTIR, XRD) of Sodium Carboxymethyl Cellulose Modified Bentonite". Archives of Foundry Engineering. 119-125. 10.24425/afe.2020.133340.
DOI: https://doi.org/10.24425/afe.2020.133340[28] Z. Su, L. Yu, L. Cui, G. Zhou, X. Zhang, X. Qiu, C. Chen, and X. Wang. (2023). "Reconstruction of Cellulose Intermolecular Interactions from Hydrogen Bonds to Dynamic Covalent Networks Enables a Thermo-processable Cellulosic Plastic with Tunable Strength and Toughness". ACS Nano. 17 (21): 21420-21431. 10.1021/acsnano.3c06175.
DOI: https://doi.org/10.1021/acsnano.3c06175[29] Rahmi, M. Iqhrammullah, U. Audina, H. Husin, and H. Fathana. (2021). "Adsorptive removal of Cd (II) using oil palm empty fruit bunch-based charcoal/chitosan-EDTA film composite". Sustainable Chemistry and Pharmacy. 21. 10.1016/j.scp.2021.100449.
DOI: https://doi.org/10.1016/j.scp.2021.100449[30] Marlina, M. Iqhrammullah, S. Saleha, Fathurrahmi, F. P. Maulina, and R. Idroes. (2020). "Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH(3)-N removal". Heliyon. 6 (8): e04590. 10.1016/j.heliyon.2020.e04590.
DOI: https://doi.org/10.1016/j.heliyon.2020.e04590[31] T. A. Saleh, A. Sarı, and M. Tuzen. (2021). "Development and characterization of bentonite-gum arabic composite as novel highly-efficient adsorbent to remove thorium ions from aqueous media". Cellulose. 28 (16): 10321-10333. 10.1007/s10570-021-04158-1.
DOI: https://doi.org/10.1007/s10570-021-04158-1[32] R. Rahmi, L. Lelifajri, M. Iqbal, F. Fathurrahmi, J. Jalaluddin, R. Sembiring, M. Farida, and M. Iqhrammullah. (2022). "Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal". Arabian Journal for Science and Engineering. 48 (1): 159-167. 10.1007/s13369-022-06786-6.
DOI: https://doi.org/10.1007/s13369-022-06786-6[33] M. Moersilah, A. Rahman, E. Alanas, Y. Yuliani, and R. Rosmalia. (2021). "Synthesis and characterization of composite magnetite-bentonite from Indonesian local minerals". IOP Conference Series: Materials Science and Engineering. 1098 (6). 10.1088/1757-899x/1098/6/062045.
DOI: https://doi.org/10.1088/1757-899X/1098/6/062045[34] A. O. Akar, U. H. Yildiz, and U. Tayfun. (2021). "Investigations of polyamide nano-composites containing bentonite and organo-modified clays: Mechanical, thermal, structural and processing performances". Reviews on Advanced Materials Science. 60 (1): 293-302. 10.1515/rams-2021-0025.
DOI: https://doi.org/10.1515/rams-2021-0025[35] L. Frolova and B. Blyuss. (2023). "Investigation of Cr(III) adsorption in aqueous solution using bentonite". Applied Nanoscience. 13 (7): 5323-5333. 10.1007/s13204-023-02767-9.
DOI: https://doi.org/10.1007/s13204-023-02767-9[36] M. Suranek, Z. Melichova, and M. Thomas. (2024). "Removal of cadmium and cobalt from water by Slovak bentonites: efficiency, isotherms, and kinetic study". Environmental Science and Pollution Research. 31 (20): 29199-29217. 10.1007/s11356-024-33133-z.
DOI: https://doi.org/10.1007/s11356-024-33133-z[37] Ngainunsiami, Lalhmunsiama, and D. Tiwari. (2025). "Facile synthesis of novel graphene-based magnetized nanocomposite for the simultaneous elimination of lead (II) and chromium (VI) in aqueous medium: Insights of interfacial studies". Chemical Engineering Research and Design. 219 : 67-78. 10.1016/j.cherd.2025.05.056.
DOI: https://doi.org/10.1016/j.cherd.2025.05.056[38] A. Ahmadi, R. Foroutan, H. Esmaeili, and S. Tamjidi. (2020). "The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media". Environmental Science and Pollution Research. 27 (12): 14044-14057. 10.1007/s11356-020-07756-x.
DOI: https://doi.org/10.1007/s11356-020-07756-x[39] Z. Li, P. Zou, J. Yang, M. Huang, L. Zhang, C. Huang, F. Yang, R. Huang, S. Lv, and G. Wei. (2021). "A functionalized tannin-chitosan bentonite composite with superior adsorption capacity for Cr(VI)". Journal of Polymer Engineering. 41 (1): 34-43. 10.1515/polyeng-2020-0133.
DOI: https://doi.org/10.1515/polyeng-2020-0133[40] S. Singh, A. G. Anil, S. Khasnabis, V. Kumar, B. Nath, V. Adiga, T. S. S. Kumar Naik, S. Subramanian, V. Kumar, J. Singh, and P. C. Ramamurthy. (2022). "Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics". Environmental Research. 203 : 111891. 10.1016/j.envres.2021.111891.
DOI: https://doi.org/10.1016/j.envres.2021.111891[41] C. Marcu, V. Codruţa, and A. and Balla. (2021). "Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin". Analytical Letters. 54 (1-2): 140-149. 10.1080/00032719.2020.1731523.
DOI: https://doi.org/10.1080/00032719.2020.1731523[42] C. Wang, C. Xiong, Y. He, C. Yang, X. Li, J. Zheng, and S. Wang. (2021). "Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms". Chemical Engineering Journal. 415. 10.1016/j.cej.2021.128923.
DOI: https://doi.org/10.1016/j.cej.2021.128923Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Julinawati Julinawati, Eka Nadia, Irfan Mustafa, Suryati Suryati

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.