Preparation and Characterization of Cellulose-clay Composite using Indonesian Natural Bentonite for Cr(VI) Adsorption

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.289

Keywords:

adsorption, bentonite, cellulose, Freundlich, montmorillonite

Abstract

Contamination of Cr(VI) is of global concern, whereas the innovation in wastewater treatment is required. Combination of bentonite and cellulose could produce an effective adsorbent to treat Cr(VI)-containing wastewater. The aim of this study was to investigate the use of composite bentonite/cellulose (B/Cell) to remove Cr(VI) in the aqueous media, in which the bentonite was collected from local sources. The Na-bentonite was firstly prepared before proceeding to cellulose embedment. The resultant B/Cell was characterized for its functional groups, morphology, and crystallinity. The Cr(VI) adsorption capacity and removal efficiency were determined based on batch adsorption. Our findings revealed that the B/Cell composite with a 4:1 bentonite-to-cellulose mass ratio exhibited the highest removal efficiency (85.68%) among tested formulations. Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analyses confirmed the successful integration of cellulose and structural modification of bentonite. Optimal adsorption was achieved at pH 3, 180-min contact time, and 10 g/L adsorbent dosage. Isotherm modeling showed excellent fits for Sips (R2 = 0.9992) model, with maximum adsorption capacity reaching 192.56 mg/g. Kinetic analysis indicated pseudo-second-order kinetics (R2 = 0.959, qe = 1.018 mg/g), suggesting a chemisorption mechanism. These results highlight the potential of the B/Cell composite as an efficient and low-cost adsorbent for Cr(VI) removal from aqueous environments.

References

[1] J. J. Coetzee, N. Bansal, and E. M. N. Chirwa. (2018). "Chromium in Environment, Its Toxic Effect from Chromite-Mining and Ferrochrome Industries, and Its Possible Bioremediation". Exposure and Health. 12 (1): 51-62. 10.1007/s12403-018-0284-z.

DOI: https://doi.org/10.1007/s12403-018-0284-z

[2] J. Liang, X. Huang, J. Yan, Y. Li, Z. Zhao, Y. Liu, J. Ye, and Y. Wei. (2021). "A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater". Science of The Total Environment. 774. 10.1016/j.scitotenv.2021.145762.

DOI: https://doi.org/10.1016/j.scitotenv.2021.145762

[3] E. Vasileiou, P. Papazotos, D. Dimitrakopoulos, and M. Perraki. (2021). "Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece". Water. 13 (20). 10.3390/w13202809.

DOI: https://doi.org/10.3390/w13202809

[4] T. Ahmad, K. Ahmad, Z. I. Khan, Z. Munir, A. Khalofah, R. N. Al-Qthanin, M. S. Alsubeie, S. Alamri, M. Hashem, S. Farooq, M. M. Maqbool, S. Hashim, and Y. F. Wang. (2021). "Chromium accumulation in soil, water and forage samples in automobile emission area". Saudi Journal of Biological Sciences. 28 (6): 3517-3522. 10.1016/j.sjbs.2021.03.020.

DOI: https://doi.org/10.1016/j.sjbs.2021.03.020

[5] D. Karunanidhi, P. Aravinthasamy, T. Subramani, D. Kumar, and G. Venkatesan. (2021). "Chromium contamination in groundwater and Sobol sensitivity model based human health risk evaluation from leather tanning industrial region of South India". Environmental Research. 199 : 111238. 10.1016/j.envres.2021.111238.

DOI: https://doi.org/10.1016/j.envres.2021.111238

[6] S. Prasad, K. K. Yadav, S. Kumar, N. Gupta, M. M. S. Cabral-Pinto, S. Rezania, N. Radwan, and J. Alam. (2021). "Chromium contamination and effect on environmental health and its remediation: A sustainable approaches". Journal of Environmental Management. 285 : 112174. 10.1016/j.jenvman.2021.112174.

DOI: https://doi.org/10.1016/j.jenvman.2021.112174

[7] G. Gorbi, M. Invidia, C. Zanni, A. Torelli, and M. G. Corradi. (2004). "Bioavailability, bioaccumulation and tolerance of chromium: consequences in the food chain of freshwater ecosystems". Annales de Chimie. 94 (7-8): 505-13. 10.1002/adic.200490064.

DOI: https://doi.org/10.1002/adic.200490064

[8] K. Ahmad, M. Iqhrammullah, D. R. Rizki, A. Aulia, A. Q. Mairizal, A. Purnama, I. Qanita, S. N. Abdulmadjid, and K. Puspita. (2022). "Heavy Metal Contamination in Aquatic and Terrestrial Animals Resulted from Anthropogenic Activities in Indonesia: A Review". Asian Journal of Water, Environment and Pollution. 19 (4): 1-8. 10.3233/ajw220049.

DOI: https://doi.org/10.3233/AJW220049

[9] Y. Pratama, M. Kadir, A. Rivaldi, I. Mulya, S. Amirah, and M. Iqhrammullah. (2024). "Bibliometric analysis of the impact of environmental degradation on women and the importance of women’s representation". Global Journal of Environmental Science and Management.  

[10] M. Iqhrammullah, R. Y. Refin, R. I. Rasmi, F. F. Andika, H. Hajjah, M. Marlina, and R. Ningsih. (2023). "Cancer in Indonesia: A bibliometric surveillance". Narra X. 1 (2). 10.52225/narrax.v1i2.86.

DOI: https://doi.org/10.52225/narrax.v1i2.86

[11] J. Julinawati, F. Febriani, I. Mustafa, F. Fathurrahmi, R. Rahmi, S. Sheilatina, K. Ahmad, K. Puspita, and M. Iqhrammullah. (2023). "Tryptophan-Based Organoclay for Aqueous Naphthol Blue Black Removal – Preparation, Characterization, and Batch Adsorption Studies". Journal of Ecological Engineering. 24 (7): 274-284. 10.12911/22998993/165781.

DOI: https://doi.org/10.12911/22998993/165781

[12] K. Ahmad and W. Chiari. (2023). "Metal oxide/chitosan composite for organic pollutants removal: A comprehensive review with bibliometric analysis". Narra X. 1 (2). 10.52225/narrax.v1i2.91.

DOI: https://doi.org/10.52225/narrax.v1i2.91

[13] J. D. Castro-Castro, I. F. Macias-Quiroga, G. I. Giraldo-Gomez, and N. R. Sanabria-Gonzalez. (2020). "Adsorption of Cr(VI) in Aqueous Solution Using a Surfactant-Modified Bentonite". ScientificWorldJournal. 2020 : 3628163. 10.1155/2020/3628163.

[14] G. Lemessa, Y. Chebude, and E. Alemayehu. (2023). "Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite". AQUA — Water Infrastructure, Ecosystems and Society. 72 (12): 2239-2261. 10.2166/aqua.2023.132.

DOI: https://doi.org/10.2166/aqua.2023.132

[15] A. Rahman, K. Yoshida, M. M. Islam, and G. Kobayashi. (2023). "Investigation of Efficient Adsorption of Toxic Heavy Metals (Chromium, Lead, Cadmium) from Aquatic Environment Using Orange Peel Cellulose as Adsorbent". Sustainability. 15 (5). 10.3390/su15054470.

DOI: https://doi.org/10.3390/su15054470

[16] Q. Wu, H. He, H. Zhou, F. Xue, H. Zhu, S. Zhou, L. Wang, and S. Wang. (2020). "Multiple active sites cellulose-based adsorbent for the removal of low-level Cu(II), Pb(II) and Cr(VI) via multiple cooperative mechanisms". Carbohydrate Polymers. 233 : 115860. 10.1016/j.carbpol.2020.115860.

DOI: https://doi.org/10.1016/j.carbpol.2020.115860

[17] C. Soloviy, M. Malovanyy, O. Palamarchuk, I. Trach, H. Petruk, H. Sakalova, T. Vasylinych, and N. Vronska. (2021). "Adsorption method of purification of stocks from chromium(III) ions by bentonite clays". Journal of Water and Land Development. 99-104. 10.24425/jwld.2021.136152.

DOI: https://doi.org/10.24425/jwld.2021.136152

[18] S. J. Priatna, Y. M. Hakim, S. Wibyan, S. Sailah, and R. Mohadi. (2023). "Interlayer Modification of West Java Natural Bentonite as Hazardous Dye Rhodamine B Adsorption". Science and Technology Indonesia. 8 (2): 160-169. 10.26554/sti.2023.8.2.160-169.

DOI: https://doi.org/10.26554/sti.2023.8.2.160-169

[19] A. L. Obsa, N. T. Shibeshi, E. Mulugeta, and G. A. Workeneh. (2024). "Bentonite/amino-functionalized cellulose composite as effective adsorbent for removal of lead: Kinetic and isotherm studies". Results in Engineering. 2110.1016/j.rineng.2024.101756.

DOI: https://doi.org/10.1016/j.rineng.2024.101756

[20] J. Jia, Y. Liu, and S. Sun. (2021). "Preparation and Characterization of Chitosan/Bentonite Composites for Cr (VI) Removal from Aqueous Solutions". Adsorption Science & Technology. 2021 : 6681486. 10.1155/2021/6681486.

[21] Z. Deng, Z. Wu, Q. Wu, J. Yu, C. Zou, H. Deng, P. Jin, and D. Fang. (2024). "Cellulose nanocrystals intercalated clay biocomposite for rapid Cr(VI) removal". Environmental Science and Pollution Research. 31 (20): 29719-29729. 10.1007/s11356-024-33066-7.

DOI: https://doi.org/10.1007/s11356-024-33066-7

[22] J. Yang, B. Huang, and M. Lin. (2020). "Adsorption of Hexavalent Chromium from Aqueous Solution by a Chitosan/Bentonite Composite: Isotherm, Kinetics, and Thermodynamics Studies". Journal of Chemical & Engineering Data. 65 (5): 2751-2763. 10.1021/acs.jced.0c00085.

DOI: https://doi.org/10.1021/acs.jced.0c00085

[23] R. Tang, Z. Wang, Y. Muhammad, H. Shi, K. Liu, J. Ji, Y. Zhu, Z. Tong, and H. Zhang. (2021). "Fabrication of carboxymethyl cellulose and chitosan modified Magnetic alkaline Ca-bentonite for the adsorption of hazardous doxycycline". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 61010.1016/j.colsurfa.2020.125730.

DOI: https://doi.org/10.1016/j.colsurfa.2020.125730

[24] R. D. Fan, K. R. Reddy, Y. L. Yang, and Y. J. Du. (2020). "Index Properties, Hydraulic Conductivity and Contaminant-Compatibility of CMC-Treated Sodium Activated Calcium Bentonite". International Journal of Environmental Research and Public Health. 17 (6). 10.3390/ijerph17061863.

DOI: https://doi.org/10.3390/ijerph17061863

[25] Y. Chen, Z. Nie, J. Gao, J. Wang, and M. Cai. (2021). "A novel adsorbent of bentonite modified chitosan-microcrystalline cellulose aerogel prepared by bidirectional regeneration strategy for Pb(II) removal". Journal of Environmental Chemical Engineering. 9 (4). 10.1016/j.jece.2021.105755.

DOI: https://doi.org/10.1016/j.jece.2021.105755

[26] S. P. Santoso, A. Kurniawan, F. E. Soetaredjo, K.-C. Cheng, J. N. Putro, S. Ismadji, and Y.-H. Ju. (2019). "Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture". Cellulose. 26 (5): 3339-3358. 10.1007/s10570-019-02314-2.

DOI: https://doi.org/10.1007/s10570-019-02314-2

[27] S. Cukrowicz, B. Grabowska, K. Kaczmarska, A. Bobrowski, M. Sitarz, and B. Tyliszczak. (2020). "Structural Studies (FTIR, XRD) of Sodium Carboxymethyl Cellulose Modified Bentonite". Archives of Foundry Engineering. 119-125. 10.24425/afe.2020.133340.

DOI: https://doi.org/10.24425/afe.2020.133340

[28] Z. Su, L. Yu, L. Cui, G. Zhou, X. Zhang, X. Qiu, C. Chen, and X. Wang. (2023). "Reconstruction of Cellulose Intermolecular Interactions from Hydrogen Bonds to Dynamic Covalent Networks Enables a Thermo-processable Cellulosic Plastic with Tunable Strength and Toughness". ACS Nano. 17 (21): 21420-21431. 10.1021/acsnano.3c06175.

DOI: https://doi.org/10.1021/acsnano.3c06175

[29] Rahmi, M. Iqhrammullah, U. Audina, H. Husin, and H. Fathana. (2021). "Adsorptive removal of Cd (II) using oil palm empty fruit bunch-based charcoal/chitosan-EDTA film composite". Sustainable Chemistry and Pharmacy. 2110.1016/j.scp.2021.100449.

DOI: https://doi.org/10.1016/j.scp.2021.100449

[30] Marlina, M. Iqhrammullah, S. Saleha, Fathurrahmi, F. P. Maulina, and R. Idroes. (2020). "Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH(3)-N removal". Heliyon. 6 (8): e04590. 10.1016/j.heliyon.2020.e04590.

DOI: https://doi.org/10.1016/j.heliyon.2020.e04590

[31] T. A. Saleh, A. Sarı, and M. Tuzen. (2021). "Development and characterization of bentonite-gum arabic composite as novel highly-efficient adsorbent to remove thorium ions from aqueous media". Cellulose. 28 (16): 10321-10333. 10.1007/s10570-021-04158-1.

DOI: https://doi.org/10.1007/s10570-021-04158-1

[32] R. Rahmi, L. Lelifajri, M. Iqbal, F. Fathurrahmi, J. Jalaluddin, R. Sembiring, M. Farida, and M. Iqhrammullah. (2022). "Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal". Arabian Journal for Science and Engineering. 48 (1): 159-167. 10.1007/s13369-022-06786-6.

DOI: https://doi.org/10.1007/s13369-022-06786-6

[33] M. Moersilah, A. Rahman, E. Alanas, Y. Yuliani, and R. Rosmalia. (2021). "Synthesis and characterization of composite magnetite-bentonite from Indonesian local minerals". IOP Conference Series: Materials Science and Engineering. 1098 (6). 10.1088/1757-899x/1098/6/062045.

DOI: https://doi.org/10.1088/1757-899X/1098/6/062045

[34] A. O. Akar, U. H. Yildiz, and U. Tayfun. (2021). "Investigations of polyamide nano-composites containing bentonite and organo-modified clays: Mechanical, thermal, structural and processing performances". Reviews on Advanced Materials Science. 60 (1): 293-302. 10.1515/rams-2021-0025.

DOI: https://doi.org/10.1515/rams-2021-0025

[35] L. Frolova and B. Blyuss. (2023). "Investigation of Cr(III) adsorption in aqueous solution using bentonite". Applied Nanoscience. 13 (7): 5323-5333. 10.1007/s13204-023-02767-9.

DOI: https://doi.org/10.1007/s13204-023-02767-9

[36] M. Suranek, Z. Melichova, and M. Thomas. (2024). "Removal of cadmium and cobalt from water by Slovak bentonites: efficiency, isotherms, and kinetic study". Environmental Science and Pollution Research. 31 (20): 29199-29217. 10.1007/s11356-024-33133-z.

DOI: https://doi.org/10.1007/s11356-024-33133-z

[37] Ngainunsiami, Lalhmunsiama, and D. Tiwari. (2025). "Facile synthesis of novel graphene-based magnetized nanocomposite for the simultaneous elimination of lead (II) and chromium (VI) in aqueous medium: Insights of interfacial studies". Chemical Engineering Research and Design. 219 : 67-78. 10.1016/j.cherd.2025.05.056.

DOI: https://doi.org/10.1016/j.cherd.2025.05.056

[38] A. Ahmadi, R. Foroutan, H. Esmaeili, and S. Tamjidi. (2020). "The role of bentonite clay and bentonite clay@MnFe2O4 composite and their physico-chemical properties on the removal of Cr(III) and Cr(VI) from aqueous media". Environmental Science and Pollution Research. 27 (12): 14044-14057. 10.1007/s11356-020-07756-x.

DOI: https://doi.org/10.1007/s11356-020-07756-x

[39] Z. Li, P. Zou, J. Yang, M. Huang, L. Zhang, C. Huang, F. Yang, R. Huang, S. Lv, and G. Wei. (2021). "A functionalized tannin-chitosan bentonite composite with superior adsorption capacity for Cr(VI)". Journal of Polymer Engineering. 41 (1): 34-43. 10.1515/polyeng-2020-0133.

DOI: https://doi.org/10.1515/polyeng-2020-0133

[40] S. Singh, A. G. Anil, S. Khasnabis, V. Kumar, B. Nath, V. Adiga, T. S. S. Kumar Naik, S. Subramanian, V. Kumar, J. Singh, and P. C. Ramamurthy. (2022). "Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics". Environmental Research. 203 : 111891. 10.1016/j.envres.2021.111891.

DOI: https://doi.org/10.1016/j.envres.2021.111891

[41] C. Marcu, V. Codruţa, and A. and Balla. (2021). "Adsorption Kinetics of Chromium (VI) from Aqueous Solution Using an Anion Exchange Resin". Analytical Letters. 54 (1-2): 140-149. 10.1080/00032719.2020.1731523.

DOI: https://doi.org/10.1080/00032719.2020.1731523

[42] C. Wang, C. Xiong, Y. He, C. Yang, X. Li, J. Zheng, and S. Wang. (2021). "Facile preparation of magnetic Zr-MOF for adsorption of Pb(II) and Cr(VI) from water: Adsorption characteristics and mechanisms". Chemical Engineering Journal. 41510.1016/j.cej.2021.128923.

DOI: https://doi.org/10.1016/j.cej.2021.128923

Downloads

Published

2025-08-06

How to Cite

[1]
J. Julinawati, E. Nadia, I. Mustafa, and S. Suryati, “Preparation and Characterization of Cellulose-clay Composite using Indonesian Natural Bentonite for Cr(VI) Adsorption”, J. Multidiscip. Appl. Nat. Sci., Aug. 2025.

Issue

Section

Articles