Alginate as A Natural Coagulant-Aid: Advances, Challenges, and Applications

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.287

Keywords:

alginate, coagulant-aid, sustainability, natural coagulant, wastewater treatment

Abstract

Coagulation is a critical step in water and wastewater treatments that is essential for the removal of suspended solids, organic matters, and colloidal particles. Conventional metal-based coagulants such as aluminium sulphate, ferric chloride, and polyaluminium chloride and synthetic polymer such as polyacrylamide are widely used due to their proven efficiency. However, concerns over their environmental impact, including the generation of non-biodegradable sludge, potential health risks, and negative impact on the water ecosystem, have driven the search for alternative, eco-friendly coagulants. Natural coagulants derived from plants, animals, or microorganisms have emerged as promising alternatives, offering advantages like biodegradability, non-toxicity, and lower sludge production. Among these, polysaccharide-based coagulants such as alginate, a biopolymer sourced from brown seaweed and bacteria, have gained significant attention. Alginate's biodegradability, non-toxicity, low cost, and versatile gelation properties make it a potential substitute for synthetic coagulants. This review focuses on the use of alginate as a coagulant-aid, providing an overview of its sources, characteristics, coagulation mechanisms, and variables that affect the coagulation performance. The review also highlights the benefits, challenges, and future research directions for improving the efficiency and scalability of alginate in sustainable water/wastewater treatment processes.

References

[1] C. P. Sagita, L. Nulandaya, and Y. S. Kurniawan. (2021). "Efficient and Low-Cost Removal of Methylene Blue using Activated Natural Kaolinite Material". Journal of Multidisciplinary Applied Natural Science. 1 (2): 69-77. 10.47352/jmans.v1i2.80.

[2] H. Kristianto, N. Daulay, and A. A. Arie. (2019). "Adsorption of Ni(II) Ion onto Calcined Eggshells: A Study of Equilibrium Adsorption Isotherm". Indonesian Journal of Chemistry. 19 (1): 143 - 150. 10.22146/ijc.29200.

[3] S. P. Bera and C. K. Manoj Godhaniya. (2022). "Emerging and advanced membrane technology for wastewater treatment: A review". Journal of Basic Microbiology. 62 (3-4): 245-259. 10.1002/jobm.202100259.

[4] T. Hudaya, H. Kristianto, and C. Meliana. (2018). "The Simultaneous Removal of Cyanide and Cadmium Ions from Electroplating Wastewater using UV/TiO2 Photocatalysis". International Journal of Technology. 9 (5): 964-971. 10.14716/ijtech.v9i5.1797.

[5] Kusumlata, B. Ambade, A. Kumar, and S. Gautam. (2024). "Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments". Limnological Review. 24 (2): 126-149. 10.3390/limnolrev24020007.

[6] A. K. Verma, R. R. Dash, and P. Bhunia. (2012). "A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters". Journal of Environmental Management. 93 : 154-168.10.1016/j.jenvman.2011.09.012.

[7] H. Kristianto. (2017). "The Potency of Indonesia Native Plants as Natural Coagulant: a Mini Review". Water Conservation Science and Engineering. 2 : 51–60. 10.1007/s41101-017-0024-4.

[8] V. Rondeau, D. Commenges, H. Jacqmin-Gadda, and J.-F. Dartigues. (2000). "Relation between aluminum concentrations in drinking water and Alzheimer's disease: an 8-year follow-up study". American Journal of Epidemiology. 152 (1): 59-66. 10.1093/aje/152.1.59.

DOI: https://doi.org/10.1093/aje/152.1.59

[9] A. A. Nikitina, A. A. Ermoshin, E. A. Zhuravleva, A. A. Kovalev, D. A. Kovalev, V. Panchenko, and Y. V. Litti. (2021). "Application of Polyacrylamide Flocculant for Stabilization of Anaerobic Digestion under Conditions of Excessive Accumulation of Volatile Fatty Acids". Applied Sciences. 11 (1): 100. 10.3390/app11010100.

DOI: https://doi.org/10.3390/app11010100

[10] D. P. Weston, R. D. Lentz, M. D. Cahn, R. S. Ogle, A. K. Rothert, and M. J. Lydy. (2009). "Toxicity of Anionic Polyacrylamide Formulations when Used for Erosion Control in Agriculture". Journal of Environmental Quality.38 : 238–247. 10.2134/jeq2008.0109.

[11] K. L. Duggan, M. Morris, S. K. Bhatia, M. M. Khachan, and K. E. Lewis. (2019). "Effects of Cationic Polyacrylamide and Cationic Starch on Aquatic Life". Journal of Hazardous, Toxic, and Radioactive Waste. 23(4): 04019022. 10.1061/(ASCE)HZ.2153-5515.0000467.

[12] Y. C. Ho, I. Norli, A. F. M. Alkarkhi, and N. Morad. (2010). "Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): A comparative study on treatment and optimization in kaolin suspension". Bioresource Technology. 101 : 1166–1174. 10.1016/j.biortech.2009.09.064.

DOI: https://doi.org/10.1016/j.biortech.2009.09.064

[13] C. Y. Teh, P. M. Budiman, K. P. Y. Shak, and T. Y. Wu. (2016). "Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment". Industrial and Engineering Chemistry Research. 55(16): 4363-4389. 10.1021/acs.iecr.5b04703.

[14] S. B. Kurniawan, S. R. S. Abdullah, M. F. Imron, N. S. M. Said, N. I. Ismail, H. A. Hasan, A. R. Othman, and I. F. Purwanti. (2020). "Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery". International Journal of Environmental Research and Public Health. 17 (24): 9312. 10.3390/ijerph17249312.

DOI: https://doi.org/10.3390/ijerph17249312

[15] C.-Y. Yin. (2010). "Emerging usage of plant-based coagulants for water and wastewater treatment". Process Biochemistry. 45 : 1437-1444. 10.1016/j.procbio.2010.05.030.

[16] S. Y. Choy, K. M. N. Prasad, T. Y. Wu, and R. N. Ramanan. (2015). "A review on common vegetables and legumes as promising plant-based natural coagulants in water clarification". International Journal of Environmental Science and Technology. 12 : 367-390. 10.1007/s13762-013-0446-2.

[17] H. Kristianto. (2021). "Recent advances on magnetic natural coagulant: a mini review". Environmental Technology Reviews. 10 (1): 254-269. 10.1080/21622515.2021.1986576.

[18] H. Kristianto, N. Manurung, I. K. Wardhani, S. Prasetyo, A. K. Sugih, and A. A. Arbita. (2022). "A kinetic, isotherm adsorption, and thermodynamic study of Congo red coagulation using Leucaena crude extract as natural coagulant". Water Practice and Technology. 17 (6): 1332-1346. 10.2166/wpt.2022.058.

DOI: https://doi.org/10.2166/wpt.2022.058

[19] J. Kristanda, K. Sandrosa, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2021). "Optimization study of Leucaena leucocephala seeds extract as natural coagulant on decolorization of aqueous Congo red solutions". Arabian Journal for Science and Engineering. 46 (7): 6275-6286. 10.1007/s13369-020-05008-1.

[20] M. P. Wagh, Y. Aher, and A. Mandalik. (2022). "Potential of Moringa Oleifera Seed as a Natural Adsorbent for Wastewater Treatment". Trends in Sciences. 19 (2): 2019. 10.48048/tis.2022.2019.

[21] Christian, M. J. B. Putra, H. Kristianto, S. Prasetyo, A. K. Sugih, and A. A. Arbita. (2024). "Removal of Congo red and tartrazine binary mixture using Leucaena leucocephala seed’s extract as natural coagulant". IOP Conference Series: Earth and Environmental Science. 1388 : 012001. 10.1088/1755-1315/1388/1/012001.

DOI: https://doi.org/10.1088/1755-1315/1388/1/012001

[22] A. Ibrahim, A. Z. Yaser, and J. Lamaming. (2021). "Synthesising tannin-based coagulants for water and wastewater application: A review". Journal of Environmental Chemical Engineering. 9 (1): 105007. 10.1016/j.jece.2020.105007.

[23] T. Leiviskä and S. C. R. Santos. (2023). "Purifying water with plant-based sustainable solutions: Tannin coagulants and sorbents". Groundwater for Sustainable Development. 23 : 101004. 10.1016/j.gsd.2023.101004.

DOI: https://doi.org/10.1016/j.gsd.2023.101004

[24] S. M. Asharuddin, N. Othman, W. A. H. Altowayti, N. A. Bakar, and A. Hassan. (2021). "Recent advancement in starch modification and its application as water treatment agent". Environmental Technology & Innovation. 23 : 101637. 10.1016/j.eti.2021.101637.

DOI: https://doi.org/10.1016/j.eti.2021.101637

[25] M. M. Sudirgo, R. A. Surya, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2023). "Application of xanthan gum as coagulant-aid for decolorization of synthetic Congo red wastewater". Heliyon. 9 (4): E15011. 10.1016/j.heliyon.2023.e15011.

DOI: https://doi.org/10.1016/j.heliyon.2023.e15011

[26] F. Shao, J. Xu, J. Zhang, L. Wei, C. Zhao, X. Cheng, C. Lu, and Y. Fu. (2021). "Study on the influencing factors of natural pectin's flocculation: Their sources, modification, and optimization". Water Environment Research. 93(10): 2261-2273. 10.1002/wer.1598.

[27] F. M. K. Haryanto, A. V. M. Rumondor, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2024). "The Utilization of Pectin as Natural Coagulant-Aid in Congo Red Dye Removal". Journal of Multidisciplinary Applied Natural Science. 4 (1): 39-48. 10.47352/jmans.2774-3047.179.

DOI: https://doi.org/10.47352/jmans.2774-3047.179

[28] S. Prasetyo, C. A. Santos, A. K. Sugih, and H. Kristianto. (2025). "Utilization of chitosan as a natural coagulant for polyethylene microplastic removal". Sustainable Chemistry for the Environment. 9 : 100225. 10.1016/j.scenv.2025.100225.

[29] R. G. Puscaselu, A. Lobiuc, M. Dimian, and M. Covasa. (2020). "Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders". Polymers. 12 (10): 2417. 10.3390/polym12102417.

[30] B. Wang, Y. Wan, Y. Zheng, X. Lee, T. Liu, Z. Yu, J. Huang, Y. S. Ok, J. Chen, and B. Gao. (2019). "Alginate-based composites for environmental applications: a critical review". Critical Reviews in Environmental Science and Technology. 49 (4): 318-356. 10.1080/10643389.2018.1547621.

[31] A. Benettayeb, M. H. Brahim, B. Lal, S. Al-Farraj, M. Belkacem, M. J. Masamvu, B. Haddou, A. A. Alkahtane, C.-h. Chia, M. Sillanpaa, S. Ghosh, and A. Hosseini-Bandegharaei. (2024). "Insights into logical method selection for modification of chitosan and alginate towards the adsorption of heavy metal ions: a review". Environmental Technology Reviews. 13 (1): 398-420 10.1080/21622515.2024.2354519.

DOI: https://doi.org/10.1080/21622515.2024.2354519

[32] S. Radoor, J. Karayil, A. Jayakumar, D. R. Kandel, J. T. Kim, S. Siengchin, and J. Lee. (2024). "Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review". Carbohydrate Polymers. 323 : 121339. 10.1016/j.carbpol.2023.121339.

DOI: https://doi.org/10.1016/j.carbpol.2023.121339

[33] D. Yadav and J. Dutta. (2024). "A systematic review on recent development of chitosan/alginate-based polyelectrolyte complexes for wastewater treatmentAlginate-based composites for environmental applications: A critical review". International Journal of Environmental Science and Technology. 21 : 3381-3406. 10.1007/s13762-023-05244-6.

[34] F. Rafiee. (2023). In: " Alginate - Applications and Future Perspectives, I. A. Severo, A. B. Mariano, and J. V. C. Vargas Eds., " IntechOpen. 10.5772/intechopen.110148.

[35] H. Guo, Q. Qin, J.-S. Chang, and D.-J. Lee. (2023). "Modified alginate materials for wastewater treatment: Application prospects". Bioresource Technology. 387 : 129639. 10.1016/j.biortech.2023.129639.

[36] E. A. López-Maldonado, Y. Abdellaoui, M. H. A. Elella, H. M. Abdallah, M. Pandey, E. T. Anthony, L. Ghimici, S. Álvarez-Torrellas, V. Pinos-Vélez, and N. A. Oladoja. (2024). "Innovative biopolyelectrolytes-based technologies for wastewater treatment". International Journal of Biological Macromolecules. 273 : 132895. 10.1016/j.ijbiomac.2024.132895.

DOI: https://doi.org/10.1016/j.ijbiomac.2024.132895

[37] B. Kumar, N. Singh, and P. Kumar. (2024). "A review on sources, modification techniques, properties and potential applications of alginate-based modified polymers". European Polymer Journal. 213 : 113078. 10.1016/j.eurpolymj.2024.113078.

[38] P. Saranya, S. T. Ramesh, and R. Gandhimathi. (2014). "Effectiveness of natural coagulants from non-plant-based sources for water and wastewater treatment—a review ". Desalination and Water Treatment. 52 (31-33): 6030-6039. 10.1080/19443994.2013.812993.

[39] W. L. Ang and A. W. Mohammad. (2020). "State of the art and sustainability of natural coagulants in water and wastewater treatment". Journal of Cleaner Production. 262 : 121267. 10.1016/j.jclepro.2020.121267.

[40] M. M. Rahman, M. A. Shahid, M. T. Hossain, M. S. Sheikh, M. S. Rahman, N. Uddin, A. Rahim, R. A. Khan, and I. Hossain. (2024). "Sources, extractions, and applications of alginate: a review". Discover Applied Sciences. 6 : 443. 10.1007/s42452-024-06151-2.

[41] J. Wang, S. Liu, J. Huang, K. Ren, Y. Zhu, and S. Yang. (2023). "Alginate: Microbial production, functionalization, and biomedical applications". International Journal of Biological Macromolecules. 242 : 125048. 10.1016/j.ijbiomac.2023.125048.

[42] K. Y. Lee and D. J. Mooney. (2012). "Alginate: Properties and biomedical applications". Progress in Polymer Science. 37 (1): 106-126. 10.1016/j.progpolymsci.2011.06.003.

[43] O. Smidsrød. (1970). "Solution properties of alginate". Carbohydrate Research. 13 (3): 359-372. 10.1016/S0008-6215(00)80593-5.

[44] E. ANS, M. Younes, P. Aggett, F. Aguilar, R. Crebelli, M. Filipič, M. J. Frutos, P. Galtier, D. Gott, U. Gundert-Remy, G. G. Kuhnle, C. Lambré, J.-C. Leblanc, I. T. Lillegaard, P. Moldeus, A. Mortensen, A. Oskarsson, I. Stankovic, I. Waalkens-Berendsen, R. A. Woutersen, L. B. Matthew Wright, O. Lindtner, P. Mosesso, A. Christodoulidou, Z. Horváth, F. Lodi, and B. Dusemund. (2017). "Re-evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) as food additives". EFSA Journal. 15 (11): e05049. 10.2903/j.efsa.2017.5049.

DOI: https://doi.org/10.2903/j.efsa.2017.5049

[45] M. S. Hasnain, E. Jameel, B. Mohanta, A. K. Dhara, S. Alkahtani, and A. K. Nayak. (2020). In: "Alginates in Drug Delivery". Elsevier Inc. 10.1016/B978-0-12-817640-5.00001-7.

[46] M. J. Costa, A. M. Marques, L. M. Pastrana, J. A. Teixeira, S. M. Sillankorva, and M. A. Cerqueira. (2018). "Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio". Food Hydrocolloids. 81 : 442-448. 10.1016/j.foodhyd.2018.03.014.

DOI: https://doi.org/10.1016/j.foodhyd.2018.03.014

[47] P. Agulhon, M. Robitzer, J.-P. Habas, and F. Quignard. (2014). "Influence of both cation and alginate nature on the rheological behavior of transition metal alginate gels". Carbohydrate Polymers. 112 : 525-531. 10.1016/j.carbpol.2014.05.097.

DOI: https://doi.org/10.1016/j.carbpol.2014.05.097

[48] S. B. Kurniawan, M. F. Imron, C. E. N. C. E. Chik, A. A. Owodunni, A. Ahmada, M. M. Alnawajha, N. F. M. Rahim, N. S. M. Said, S. R. S. Abdullah, N. A. Kasan, S. Ismail, A. R. Othman, and H. A. Hasan. (2022). "What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes?". Science of the Total Environment. 806 : 150902. 10.1016/j.scitotenv.2021.150902.

DOI: https://doi.org/10.1016/j.scitotenv.2021.150902

[49] M. Yao, J. Nan, Q. Li, D. Zhan, T. Chen, Z. Wang, and H. Li. (2015). "Effect of under-dosing coagulant on coagulation–ultrafiltration process for treatment of humic-rich water with divalent calcium ion". Journal of Membrane Science. 495 : 37-47. 10.1016/j.memsci.2015.08.001.

[50] M. T. Khan, M. Ahmad, M. F. Hossain, A. Nawab, I. Ahmad, K. Ahmad, and S. Panyametheekul. (2023). "Microplastic removal by coagulation: a review of optimizing the reaction conditions and mechanisms". Water Emerging Contaminants and Nanoplastics. 2 : 22. 10.20517/wecn.2023.39

DOI: https://doi.org/10.20517/wecn.2023.39

[51] P. Saranya, S. T. Ramesh, and R. Gandhimathi. (2022). "Coagulation performance evaluation of alginate as a natural coagulant for the treatment of turbid water ". Water Practice and Technology. 17 (1): 395-404. 10.2166/wpt.2021.123.

[52] H. A. Devrimci, A. M. Yuksel, and F. D. Sanin. (2012). "Algal alginate: A potential coagulant for drinking water treatment". Desalination. 299 : 16–21. 10.1016/j.desal.2012.05.004.

[53] D. Ghernaout and B. Ghernaout. (2012). "Sweep flocculation as a second form of charge neutralisation—a review". Desalination and Water Treatment. 44 (1-3): 15-28. 10.1080/19443994.2012.691699.

[54] Ç. K. Moral, H. Ertesvåg, and F. D. Sanin. (2016). "Guluronic acid content as a factor affecting turbidity removal potential of alginate". Environmental Science and Pollution Research. 23 : 22568–22576. 10.1007/s11356-016-7475-6.

[55] H. Kristianto, A. Jennifer, A. K. Sugih, and S. Prasetyo. (2020). "Potensi Polisakarida dari Limbah Buah-buahan sebagai Koagulan Alami dalam Pengolahan Air dan Limbah Cair: Review". Jurnal Rekayasa Proses. 14 (2): 108-127. 10.22146/jrekpros.57798.

DOI: https://doi.org/10.22146/jrekpros.57798

[56] Y. X. Zhao, Y. Wang, B. Y. Gao, H. K. Shon, J. H. Kim, and Q. Y. Yue. (2012). "Coagulation performance evaluation of sodium alginate used as coagulant aid with aluminum sulfate, iron chloride and titanium tetrachloride". Desalination. 299 : 79–88. 10.1016/j.desal.2012.05.026.

DOI: https://doi.org/10.1016/j.desal.2012.05.026

[57] C. Wu, Y. Wang, B. Gao, Y. Zhao, and Q. Yue. (2012). "Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment". Separation and Purification Technology. 95 : 180-187. 10.1016/j.seppur.2012.05.009.

DOI: https://doi.org/10.1016/j.seppur.2012.05.009

[58] Y. X. Zhao, B. Y. Gao, Y. Wang, H. K. Shon, X. W. Bo, and Q. Y. Yue. (2012). "Coagulation performance and floc characteristics with polyaluminum chloride using sodium alginate as coagulant aid: A preliminary assessment". Chemical Engineering Journal. 183 : 387-394. 10.1016/j.cej.2012.01.036.

DOI: https://doi.org/10.1016/j.cej.2012.01.036

[59] E. D. Suhardi, F. V. Hermawan, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2024). "Enhancing water–wastewater treatment efficiency: synergistic approach using polyaluminum chloride, sodium alginate, and magnetite for Congo red removal". Chemical Papers. 78 : 3971-3981. 10.1007/s11696-024-03367-9.

DOI: https://doi.org/10.1007/s11696-024-03367-9

[60] A.-A. E. Foulani, O. Ounas, M. Tahiri, and M. Chafi. (2023). "A Comparative Study of the Performance of Polyaluminum Chloride-Sodium Alginate and Polyaluminum Chloride-Chitosan Composite Coagulants in Dam Water Treatment". Journal of Polymers and the Environment. 31 : 4909-4918. 10.1007/s10924-023-02930-x.

DOI: https://doi.org/10.1007/s10924-023-02930-x

[61] M. Assou, L. E. Fels, A. E. Asli, H. Fakidi, S. Souabi, and M. Hafidi. (2016). "Landfill leachate treatment by a coagulation–flocculation process: effect of the introduction order of the reagents". Desalination and Water Treatment. 57 (46): 21817-21826. 10.1080/19443994.2015.1127779.

DOI: https://doi.org/10.1080/19443994.2015.1127779

[62] J. Naceradska, L. Pivokonska, and M. Pivokonsky. (2019). "On the importance of pH value in coagulation". Journal of Water Supply: Research and Technology - AQUA. 68 (3): 222-230. 10.2166/aqua.2019.155.

[63] K. Pate and P. Safier. (2016). "12 - Chemical metrology methods for CMP quality". Advances in Chemical Mechanical Planarization (CMP). 299-325. 10.1016/B978-0-08-100165-3.00012-7.

[64] L. Ramirez, S. R. Gentile, S. Zimmermann, and S. Stoll. (2016). "Comparative Study of the Effect of Aluminum Chloride, Sodium Alginate and Chitosan on the Coagulation of Polystyrene Micro-Plastic Particles". Journal of Colloid Science and Biotechnology. 5 (2): 190-198. 10.1166/jcsb.2016.1149.

[65] J.-Q. Jiang. (2015). "The role of coagulation in water treatment". Current Opinion in Chemical Engineering. 8 : 36-44. 10.1016/j.coche.2015.01.008.

[66] M. B. Bahrodin, N. S. Zaidi, N. Hussein, M. Sillanpää, D. D. Prasetyo, and A. Syafiuddin. (2021). "Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant". Current Pollution Reports. 7 : 379-391. 10.1007/s40726-021-00191-7.

[67] I. M. T. Usman, Y.-C. Ho, L. Baloo, M.-K. Lam, P.-L. Show, and W. Sujarwo. (2023). "Comprehensive Review of Modification, Optimisation, and Characterisation Methods Applied to Plant-Based Natural Coagulants (PBNCs) for Water and Wastewater Treatment". Sustainability. 15 (5): 4484. 10.3390/su15054484.

[68] M. Kastali, L. Mouhir, M. Assou, A. Anouzla, and Y. Abrouki. (2020). "Diagnosis of leachate from a closed landfill, impact on the soil, and treatment by coagulation flocculation with alginate and ferric chloride". Desalination and Water Treatment. 206 307-314. 10.5004/dwt.2020.26303.

DOI: https://doi.org/10.5004/dwt.2020.26303

[69] H. Kristianto, A. Jennifer, S. Prasetyo, and A. K. Sugih. (2022). "A preliminary study on the utilization of gelatinized durian starch as natural coagulant aid in synthetic Congo red wastewater treatment". AIP Conference Proceedings. 2645 : 030001. 10.1063/5.0113622.

[70] N. A. Awang and H. A. Aziz. (2012). "Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment ". Applied Water Science. 2 293–298. 10.1007/s13201-012-0049-y.

[71] S. Bouissil, Z. E. Alaoui-Talibi, G. Pierre, P. Michaud, C. E. Modafar, and C. Delattre. (2020). "Use of Alginate Extracted from Moroccan Brown Algae to Stimulate Natural Defense in Date Palm Roots". Molecules. 25 (3): 720. 10.3390/molecules25030720.

DOI: https://doi.org/10.3390/molecules25030720

[72] A. Mohammed, R. Bissoon, E. Bajnath, K. Mohammed, T. Lee, M. Bissram, N. John, N. K. Jalsa, K.-Y. Lee, and K. Ward. (2018). "Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach". Carbohydrate Polymers. 198 : 109-118. 10.1016/j.carbpol.2018.06.067.

DOI: https://doi.org/10.1016/j.carbpol.2018.06.067

[73] J. E. Ogbezode, U. S. Ezealigo, A. Bello, V. C. Anye, and A. P. Onwualu. (2023). "A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles". Discover Nano. 18 : 125.

DOI: https://doi.org/10.1186/s11671-023-03898-2

[74] M. Fertah, A. Belfkira, E. Dahmane, M. Taourirte, and F. Brouillette. (2017). "Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed". Arabian Journal of Chemistry. 10 : S3707–S3714. j.arabjc.2014.05.003.

DOI: https://doi.org/10.1016/j.arabjc.2014.05.003

[75] M. R. Torres, A. P. A. Sousa, E. A. T. S. Filho, D. F. Melo, J. P. A. Feitosa, R. C. M. d. Paula, and M. G. S. Lima. (2007). "Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil". Carbohydrate Research. 342 (14): 2067-2074. 10.1016/j.carres.2007.05.022.

[76] A. Díaz-Barrera, F. Sanchez-Rosales, C. Padilla-Córdova, R. Andler, and C. Peña. (2021). "Molecular weight and guluronic/mannuronic ratio of alginate produced by Azotobacter vinelandii at two bioreactor scales under diazotrophic conditions". Bioprocess and Biosystems Engineering. 44 : 1275-1287. 10.1007/s00449-021-02532-8.

DOI: https://doi.org/10.1007/s00449-021-02532-8

[77] N. Schürks, J. Wingender, H.-C. Flemming, and C. Mayer. (2002). "Monomer composition and sequence of alginates from Pseudomonas aeruginosa". International Journal of Biological Macromolecules. 30 (2): 105-111. 10.1016/S0141-8130(02)00002-8.

[78] G. Skjak-Bræk, H. Grasdalen, and B. Larsen. (1986). "Monomer sequence and acetylation pattern in some bacterial alginates". Carbohydrate Research. 154 (1): 239-250. 10.1016/S0008-6215(00)90036-3.

[79] A. Sand, A. Vyas, and A. K. Gupta. (2016). "Graft copolymer based on (sodium alginate-g-acrylamide): Characterization and study of Water swelling capacity, metal ion sorption, flocculation and resistance to biodegradability". International Journal of Biological Macromolecules. 90 : 37-43. 10.1016/j.ijbiomac.2015.11.085.

[80] C. Liu, B. Gao, S. Wang, K. Guo, X. Shen, Q. Yue, and X. Xu. (2020). "Synthesis, characterization and flocculation performance of a novel sodium alginate-based flocculant". Carbohydrate Polymers. 248 : 116790. 10.1016/j.carbpol.2020.116790.

DOI: https://doi.org/10.1016/j.carbpol.2020.116790

[81] P. Rani, P. Pal, J. P. Panday, S. Mishra, and G. Sen. (2019). "Alginic Acid Derivatives: Synthesis, Characterization and Application in Wastewater Treatment". Journal of Polymers and the Environment. 27 : 2769-2783. 10.1007/s10924-019-01553-5.

[82] T. Tripathy, H. Kolya, and S. Jana. (2018). "Selective Lead(II) Adsorption and Flocculation Characteristics of the Grafted Sodium Alginate: A Comparative Study". Journal of Polymers and the Environment. 26 : 926-937. 10.1007/s10924-017-1004-7.

[83] Z. Tian, L. Zhang, X. Sang, G. Shi, and C. Ni. (2020). "Preparation and flocculation performance study of a novel amphoteric alginate flocculant". Journal of Physics and Chemistry of Solids. 141 : 109408. 10.1016/j.jpcs.2020.109408.

[84] Y. Wang, F. Zhang, Y. Chu, B. Gao, and Q. Yue. (2013). "The dye or humic acid water treatment and membrane fouling by polyaluminum chloride composited with sodium alginate in coagulation–ultrafiltration process". Water Science and Technology. 67 (10): 2202-2209. 10.2166/wst.2013.106.

DOI: https://doi.org/10.2166/wst.2013.106

[85] G. Vijayaraghavan and S. Shanthakumar. (2015). "Removal of Sulphur Black Dye from its Aqueous Solution Using Alginate from Sargassum sp. (Brown Algae) as a Coagulant". Environmental Progress and Sustainable Energy. 34 (5): 1427–1434. 10.1002/ep.12144.

[86] G. Vijayaraghavan and S. Shanthakumar. (2018). "Effective Removal of Acid Black 1 Dye in Textile Effluent Using Alginate from Brown Algae as a Coagulant". Iranian Journal of Chemistry and Chemical Engineering. 37(4): 145-151. 10.30492/ijcce.2018.35074.

[87] G. Vijayaraghavan and S. Shanthakumar. (2018). "Effective removal of Reactive Magenta dye in textile effuent by coagulation using algal alginate". Desalination and Water Treatment. 121 : 22-27. 10.5004/dwt.2018.22190.

[88] G. Vijayaraghavan and S. Shanthakumar. (2016). "Performance study on algal alginate as natural coagulant for the removal of Congo red dye". Desalination and Water Treatment. 57 : 6384–6392. 10.1080/19443994.2015.1008578.

[89] G. Vijayaraghavan and S. Shanthakumar. (2020). "Removal of Crystal violet dye in textile effluent by coagulation using algal alginate from brown algae Sargassum sp.". Desalination and Water Treatment. 196 : 402-408.10.5004/dwt.2020.25569.

DOI: https://doi.org/10.5004/dwt.2020.25569

[90] Y. Wang, X. Li, C. Wu, Y. Zhao, B.-Y. Gao, and Q. Yue. (2014). "The role of sodium alginate in improving floc size and strength and the subsequent effects on ultrafiltration membrane fouling". Environmental Technology. 35(1): 10-17. 10.1080/09593330.2013.800589.

[91] A.-A. E. Foulani, O. Ounas, A. Laabi, B. Lekhlif, and J. Jamal-Eddine. (2020). "Removal of dissolved and colloidal matter from surface waters by composite flocculant aluminum salt-sodium alginate". Desalination and Water Treatment. 207 : 108-114. 10.5004/dwt.2020.26407.

DOI: https://doi.org/10.5004/dwt.2020.26407

[92] Y. Zhang, G. Zhou, J. Yue, X. Xing, Z. Yang, X. Wang, Q. Wang, and J. Zhang. (2021). "Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids". Science of the Total Environment. 800 : 149589. 10.1016/j.scitotenv.2021.149589.

DOI: https://doi.org/10.1016/j.scitotenv.2021.149589

[93] Y. C. Ho, I. Norli, A. F. M. Alkarkhi, and N. Morad. (2009). "Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant". Water Science and Technology. 60 (3): 771-781. 10.2166/wst.2009.303.

DOI: https://doi.org/10.2166/wst.2009.303

[94] S.-C. Chua, F.-K. Chong, M. A. Malek, M. R. U. Mustafa, N. Ismail, W. Sujarwo, J.-W. Lim, and Y.-C. Ho. (2020). "Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment". Sustainability. 12 (6): 2273. 10.3390/su12062273.

DOI: https://doi.org/10.3390/su12062273

[95] B. S. Gupta and J. E. Ako. (2005). "Application of guar gum as a flocculant aid in food processing and potable water treatment ". European Food Research and Technology. 221 : 746–751. 10.1007/s00217-005-0056-4.

[96] L. G. Vernasqui, P. Valderrama, and F. V. Silva-Medeiros. (2016). "Xanthan gum as a novel flocculant aid employed in drinking water treatment". Brazilian Journal of Food Technology. 7 (3): 52-65. 10.3895/rebrapa.v7n3.3772.

[97] A. H. Ali, Y. S. Tlaiaa, and Z. A. R. Nasir. (2019). "Sustainable Used of Natural Coagulants Aid for Enhancing the Performance of Alum to Treat Turbid Water". IOP Conference Series: Materials Science and Engineering. 518 : 022014. 10.1088/1757-899X/518/2/022014.

DOI: https://doi.org/10.1088/1757-899X/518/2/022014

[98] J. M. C. d. Feira, J. M. Klein, and M. M. D. C. Forte. (2018). "Ultrasound-assisted synthesis of polyacrylamide-grafted sodium alginate and its application in dye removal". Polimeros. 28 (2): 139-146. 10.1590/0104-1428.11316

DOI: https://doi.org/10.1590/0104-1428.11316

[99] M. H. M. Noor, S. Wong, N. Ngadi, I. M. Inuwa, and L. A. Opotu. (2021). "Assessing the effectiveness of magnetic nanoparticles coagulation/flocculation in water treatment: a systematic literature review". International Journal of Environmental Science and Technology.  10.1007/s13762-021-03369-0.

[100] A. K. Sugih, M. A. Deiza, S. F. Nurmawan, S. Prasetyo, D. Tan, and H. Kristianto. (2025). "Combination of FeCl3 and Fe3O4 as a Magnetic Coagulant for Congo Red Removal". Indonesian Journal of Urban and Environmental Technology. 8 (1): 99-115. 10.25105/urbanenvirotech.v8i1.22575.

[101] J. Tang, J. Wang, H. Jia, H. Wen, J. Li, W. Liu, and J. Li. (2019). "The investigation on Fe3O4 magnetic flocculation for high efficiency treatment of oily micro-polluted water". Journal of Environmental Management.244 : 399-407. 10.1016/j.jenvman.2019.05.068.

[102] M. H. M. Noor, S. Wong, N. Ngadi, I. M. Inuwa, and L. A. Opotu. (2022). "Assessing the effectiveness of magnetic nanoparticles coagulation/ flocculation in water treatment: a systematic literature review". International Journal of Environmental Science and Technology. 19 : 6935-6956. 10.1007/s13762-021-03369-0.

[103] A. K. Badawi, R. S. Salama, and M. M. M. Mostafa. (2023). "Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments". RSC Advances. 13: 19335. 10.1039/D3RA01999C.

[104] E. A. López-Maldonado, N. A. Khan, S. Singh, P. C. Ramamurthy, B. Kabak, J. R. V. Baudrit, M. Q. A. Silvia, Álvarez-Torrellas, R. Varshney, E. Serra-Pérez, J. García, D. A. Gkika, G. Z. Kyzas, A. Kadier, R. Singh, S. Periyasamy, D. G. Gizaw, N. Hossain, and S. Zahmatkesh. (2024). "Magnetic polymeric composites: discover their potential for separating and degrading micro/nano plastics". Desalination and Water Treatment. In press : 100198. 10.1016/j.dwt.2024.100198.

DOI: https://doi.org/10.1016/j.dwt.2024.100198

[105] V. Urtuvia, N. Maturana, F. Acevedo, C. Peña, and A. Díaz-Barrera. (2017). "Bacterial alginate production: an overview of its biosynthesis and potential industrial production". World Journal of Microbiology and Biotechnology. 33 : 198. 10.1007/s11274-017-2363-x.

[106] C. S. Lee. (2017). "Extraction of bio-flocculant from okra using hydrothermal and microwave extraction methods combined with a techno-economic assessment". PhD thesis, University of Nottingham.

[107] W. C. Zheng, N. Ismail, C. O. Boboi, and C. B. Lin. (2021). "Life Cycle Analysis for Hibiscus Sabdariffa Powder Manufactured by Freeze Drying for Wastewater Application". MATEC Web of Conferences. 335 : 01002.10.1051/matecconf/202133501002.

[108] X.-H. Sun, X.-L. Chen, X.-F. Wang, X.-R. Zhang, X.-M. Sun, M.-L. Sun, X.-Y. Zhang, Y.-Z. Zhang, Y.-Q. Zhang, and F. Xu. (2023). "Cost-effective production of alginate oligosaccharides from Laminaria japonica roots by Pseudoalteromonas agarivorans A3". Microbial Cell Factories. 22 : 179. 10.1186/s12934-023-02170-7.

[109] J. R. A. Avila, Z. Y. Kong, H.-Y. Lee, and J. Sunarso. (2021). "Advancements in Optimization and Control Techniques for Intensifying Processes". Processes. 9 (12): 2150. 10.3390/pr9122150.

[110] M. Yazdani, M. Ebrahimi-Nik, A. Heidari, and M. H. Abbaspour-Fard. (2019). "Improvement of biogas production from slaughterhouse wastewater using biosynthesized iron nanoparticles from water treatment sludge". Renewable Energy. 135 : 496-501. 10.1016/j.renene.2018.12.019.

DOI: https://doi.org/10.1016/j.renene.2018.12.019

[111] T. Ahmad, K. Ahmad, and M. Alam. (2016). "Sustainable management of water treatment sludge through 3‘R’ concept". Journal of Cleaner Production. 124 : 1-13. 10.1016/j.jclepro.2016.02.073.

[112] M. E. G. Boscov, J. K. T. , and E. L. T. Montalvan. (2021). "Beneficial Use of Water Treatment Sludge in Geotechnical Applications as a Sustainable Alternative to Preserve Natural Soils". Sustainability. 13 (17): 9848. 10.3390/su13179848.

[113] A. E. Nilsson, K. Bergman, L. P. G. Barrio, E. M. Cabral, and B. K. Tiwari. (2022). "Life cycle assessment of a seaweed-based biorefinery concept for production of food, materials, and energy". Algal Research. 65 : 102725. 10.1016/j.algal.2022.102725.

DOI: https://doi.org/10.1016/j.algal.2022.102725

[114] M. Hashemi, S. Mirmohamadsadeghi, B. Khoshnevisan, Á. Galán-Martín, J. F. M. Denayer, and K. Karimi. (2025). "Life cycle assessment of bioenergy and value-added biochemical production from Nizimudinia zanardini brown macroalgae". Science of the Total Environment. 976 : 179225. 10.1016/j.scitotenv.2025.179225.

DOI: https://doi.org/10.1016/j.scitotenv.2025.179225

[115] A. Mohammed, K. Ward, K.-Y. Lee, and V. Dupont. (2023). "The environmental impact and economic feasibility assessment of composite calcium alginate bioplastics derived from Sargassum". Green Chemistry. 25 : 5501-5516.10.1039/D3GC01019H.

[116] E. Nishikawa, M. G. C. d. Silva, and M. G. A. Vieira. (2018). "Cadmium biosorption by alginate extraction waste and process overview in Life Cycle Assessment context". Journal of Cleaner Production. 178 : 166-175.10.1016/j.jclepro.2018.01.025.

[117] S. Radovic, M. T. Sekulic, B. Agarski, S. Pap, D. Vukelic, I. Budak, and J. Prodanovic. (2023). "Life cycle assessment of new bio-based coagulant production for sustainable wastewater treatment". International Journal of Environmental Science and Technology. 20 : 7433-7462. 10.1007/s13762-022-04440-0.

[118] S. Cojbasic, B. Agarski, D. Vukelic, M. T. Sekulic, S. Pap, M. Perovic, and J. Prodanovic. (2025). "Life cycle assessment of nature-based coagulant production: Light and dark sides of the freeze-drying process". Industrial Crops and Products. 226 : 120699. 10.1016/j.indcrop.2025.120699.

DOI: https://doi.org/10.1016/j.indcrop.2025.120699

Downloads

Published

2025-07-28

How to Cite

[1]
H. Kristianto, S. Prasetyo, and A. K. Sugih, “Alginate as A Natural Coagulant-Aid: Advances, Challenges, and Applications”, J. Multidiscip. Appl. Nat. Sci., Jul. 2025.

Issue

Section

Articles