Optimization of In Vitro Microcloning of Lagochilus inebrians Bunge

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.286

Keywords:

Lagochilus inebrians, explant, culture, phytohormones, in vitro, microclonal propagation, drought, ex vitro

Abstract

In the following years, introduction (in situ) of rare and promising medicinal plants, determination of morphological and ecological adaptability to selected soil and climate conditions, and obtaining pathogen-free seedlings through microclonal (in vitro) reproduction in areas affected by environmental stress factors creation of plantations are gaining importance. This research aimed at choosing the optimal conditions for obtaining pathogen-free seedlings of Lagochilus inebrians in vitro and acclimatization in arid conditions. The optimal amounts of added phytohormones were chosen to increase the efficiency of the nutrient media used in the microconal propagation of L. inebrians, based on the possibility of acclimatization in arid conditions. The obtained results serve to multiply L. inebrians in vitro and create plantations in arid regions based on the obtained seedlings.

References

[1] N. Nasim, I. S. Sandeep, and S. Mohanty. (2022). "Plant-derived natural products for drug discovery: current approaches and prospects". The Nucleus. 65 (3): 399-411. 10.1007/s13237-022-00405-3.

DOI: https://doi.org/10.1007/s13237-022-00405-3

[2] S.-L. Chen, H. Yu, H.-M. Luo, Q. Wu, C.-F. Li, and A. Steinmetz. (2016). "Conservation and sustainable use of medicinal plants: problems, progress, and prospects". Chinese Medicine. 11 (1). 10.1186/s13020-016-0108-7.

DOI: https://doi.org/10.1186/s13020-016-0108-7

[3] E. M. Abdallah, B. Y. Alhatlani, R. de Paula Menezes, and C. H. G. Martins. (2023). "Back to Nature: Medicinal Plants as Promising Sources for Antibacterial Drugs in the Post-Antibiotic Era". Plants. 12 (17). 10.3390/plants12173077.

DOI: https://doi.org/10.3390/plants12173077

[4] R. Qureshi, A. Siddiqa, and N. Chaachouay. (2025). In: "Comprehensive Guide to Hallucinogenic Plants". CRC Press.

[5] N. Z. Mamadalieva, D. K. Akramov, L. A. Wessjohann, H. Hussain, C. Long, K. S. Tojibaev, E. Alshammari, M. L. Ashour, and M. Wink. (2021). "The Genus Lagochilus (Lamiaceae): A Review of Its Diversity, Ethnobotany, Phytochemistry, and Pharmacology". Plants. 10 (1). 10.3390/plants10010132.

DOI: https://doi.org/10.3390/plants10010132

[6] O. Rahmonov, D. E. Zaurov, B. S. Islamov, and S. W. Eisenman. (2020). In: "Natural Products of Silk Road Plants". 153-167. 10.1201/9780429061547-9.

DOI: https://doi.org/10.1201/9780429061547-9

[7] B. Islamov, M. Hasanov, G. Turakulova, and A. Akhmedov. (2022). "Estimate of the Current Condition of Populations of the <i>Lagochilus olgae</i> R.KAM. (Lamiaceae Lindl.) in Uzbekistan". American Journal of Plant Sciences. 13 (03): 307-315. 10.4236/ajps.2022.133019.

DOI: https://doi.org/10.4236/ajps.2022.133019

[8] T. C. Teuton, B. J. Brecke, J. B. Unruh, G. E. MacDonald, G. L. Miller, and J. T. Ducar. (2004). "Factors affecting seed germination of tropical signalgrass (Urochloa subquadripara)". Weed Science. 52 (3): 376-381. 10.1614/ws-03-121r1.

DOI: https://doi.org/10.1614/WS-03-121R1

[9] D. S. Tojiboeva, A. J. Kurbanova, A. K. Islamov, and Q. O. Komilov. (2023). "Determination of the amount of mineral elements contained in the inebrin substance". European Scholar Journal. 4 (5): 19-21.

[10] D. Shivali, S. Anuj, P. Rahul, and S. Sristi. (2024). "Vegetable Production". Stella International Publication. 96-109.

[11] K. Kushiev and K. Sultonova. (2022). "Lagochilus inebrians Bunge Microclonal Propagation Under in vitro Conditions". Bulletin of Science and Practice. 9 : 79-85. 10.33619/2414-2948/82/11.

DOI: https://doi.org/10.33619/2414-2948/82/11

[12] R. Michael, W. Rony, A. Silber, and D. Bar-Tal Asher. (2002). "Substrates and their analysis: Hydroponic Production of Vegetables and Ornamentals". 25-102.

[13] R. Caspa, L. Kuoudiekong, B. Nwegueh, S. Njeudeng, J. Lahjou, and J. Onana. (2010). "Effect of different substrates on rooting and shoot development of juvenile stem cuttings of Nauclea diderrichii (De Wild & T. Durand) Merrill". International Journal of Biological and Chemical Sciences. 3 (5). 10.4314/ijbcs.v3i5.51090.

DOI: https://doi.org/10.4314/ijbcs.v3i5.51090

[14] X. I. Ergasheva, Z. F. Ismoilov, B. S. Alikulov, N. X. Jo‘raqulovna, Z. F. Tillaeva, I. I. Abdullaev, A. Y. Raxmatullayev, and O. K. Ergasheva. (2024). "Biotechnological Processing of Organic and Domestic Waste and the Effect of Obtained Vermicompost on Soil Fertility". Journal of Ecological Engineering. 25 (8): 119-129. 10.12911/22998993/189894.

DOI: https://doi.org/10.12911/22998993/189894

[15] A. Haj Sghaier, Á. Tarnawa, H. Khaeim, G. P. Kovács, C. Gyuricza, and Z. Kende. (2022). "The Effects of Temperature and Water on the Seed Germination and Seedling Development of Rapeseed (Brassica napus L.)". Plants. 11 (21).  10.3390/plants11212819.

DOI: https://doi.org/10.3390/plants11212819

[16] S. J. Dalton. (2020). "A reformulation of Murashige and Skoog medium (WPBS medium) improves embryogenesis, morphogenesis and transformation efficiency in temperate and tropical grasses and cereals". Plant Cell, Tissue and Organ Culture (PCTOC). 141 (2): 257-273. 10.1007/s11240-020-01784-8.

DOI: https://doi.org/10.1007/s11240-020-01784-8

[17] A. Stanisavljević, D. Bošnjak, I. Štolfa, R. Vuković, T. Kujundžić, and M. Drenjančević. (2017). "Sterilization of different explant types in micropropagation of CAB-6p and Gisela 6 cherry rootstock". Poljoprivreda. 23 (2): 31-37. 10.18047/poljo.23.2.5.

DOI: https://doi.org/10.18047/poljo.23.2.5

[18] N. Permadi, S. I. Akbari, D. Prismantoro, N. N. Indriyani, M. Nurzaman, A. N. Alhasnawi, F. Doni, and E. Julaeha. (2024). "Traditional and next-generation methods for browning control in plant tissue culture: Current insights and future directions". Current Plant Biology. 38. 10.1016/j.cpb.2024.100339.

DOI: https://doi.org/10.1016/j.cpb.2024.100339

[19] M. Mieszczakowska-Frąc, K. Celejewska, and W. Płocharski. (2021). "Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products". Antioxidants. 10 (1).  10.3390/antiox10010054.

DOI: https://doi.org/10.3390/antiox10010054

[20] M. S. Shekhawat and M. Manokari. (2016). "Optimization of in vitro and ex vitro regeneration and micromorphological studies in Basella alba L". Physiology and Molecular Biology of Plants. 22 (4): 605-612. 10.1007/s12298-016-0388-5.

DOI: https://doi.org/10.1007/s12298-016-0388-5

[21] K. R. Sultonova and H. H. Kushiev. (2022). "Obtaining Pathogen-Free Seedlings Based on Microclonal Propagation of Lagochilus Inebriance Bunge Using in Vitro Methods". International Journal of Genetic Engineering. 10 (1): 10-15. 10.5923/j.ijge.20221001.03.

[22] Y. Long, Y. Yang, G. Pan, and Y. Shen. (2022). "New Insights Into Tissue Culture Plant-Regeneration Mechanisms". Frontiers in Plant Science. 1310.3389/fpls.2022.926752.

DOI: https://doi.org/10.3389/fpls.2022.926752

[23] S. S. Bidabadi and S. M. Jain. (2020). "Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration". Plants. 9 (6). 10.3390/plants9060702.

DOI: https://doi.org/10.3390/plants9060702

[24] N. Khasanov, B. Kodirov, Y. Tashpulatov, A. Khujanov, Z. Ismailov, and D. Ulashyev. (2023). "Germination and Seed Viability of <i>Helichrysum maracandicum</i> Popov Ex Kirp. Sterilized under <i>in Vitro</i> Conditions". American Journal of Plant Sciences. 14 (02): 118-124. 10.4236/ajps.2023.142010.

DOI: https://doi.org/10.4236/ajps.2023.142010

[25] J. B. Reid and J. J. Ross. (2011). "Regulation of tissue repair in plants". Proceedings of the National Academy of Sciences. 108 (42): 17241-17242. 10.1073/pnas.1114432108.

DOI: https://doi.org/10.1073/pnas.1114432108

[26] E. Andreasson, N. P. Kieu, M. A. Zahid, F. M. Carlsen, L. Marit, S. Sandgrind, B. L. Petersen, and L.-H. Zhu. (2022). "Invited Mini-Review Research Topic: Utilization of Protoplasts to Facilitate Gene Editing in Plants: Schemes for In Vitro Shoot Regeneration From Tissues and Protoplasts of Potato and Rapeseed: Implications of Bioengineering Such as Gene Editing of Broad-Leaved Plants". Frontiers in Genome Editing. 4. 10.3389/fgeed.2022.780004.

DOI: https://doi.org/10.3389/fgeed.2022.780004

[27] M. Ikeuchi, K. Sugimoto, and A. Iwase. (2013). "Plant Callus: Mechanisms of Induction and Repression". The Plant Cell. 25 (9): 3159-3173. 10.1105/tpc.113.116053.

DOI: https://doi.org/10.1105/tpc.113.116053

[28] M. Shamtsyan, D. Abduganiyeva, K. Ruziyev, N. Khasanov, R. Urazova, and I. Kulova. (2024). "Optimum conditions for primary callus production in microclonal propagation of Aronia melonacarpa (Michx) Elliott". BIO Web of Conferences. 13010.1051/bioconf/202413001012.

DOI: https://doi.org/10.1051/bioconf/202413001012

[29] Z. H. Lee, T. Hirakawa, N. Yamaguchi, and T. Ito. (2019). "The Roles of Plant Hormones and Their Interactions with Regulatory Genes in Determining Meristem Activity". International Journal of Molecular Sciences. 20 (16).  10.3390/ijms20164065.

DOI: https://doi.org/10.3390/ijms20164065

[30] S. A. Dar, I. A. Nawchoo, S. Tyub, and A. N. Kamili. (2021). "Effect of plant growth regulators on in vitro induction and maintenance of callus from leaf and root explants of Atropa acuminata Royle ex Lindl". Biotechnology Reports. 3210.1016/j.btre.2021.e00688.

DOI: https://doi.org/10.1016/j.btre.2021.e00688

[31] E. Nugrahaeningtyas and K.-H. Park. (2024). "Improving sustainability of peat moss through its application in reducing livestock emissions". Journal of Climate Change Research. 15 (2): 153-162. 10.15531/ksccr.2024.15.2.153.

DOI: https://doi.org/10.15531/KSCCR.2024.15.2.153

[32] W.-Y. Yen, Y.-C. Alex Chang, and Y.-T. Wang. (2011). "The Acidification of Sphagnum Moss Substrate during Phalaenopsis Cultivation". HortScience. 46 (7): 1022-1026. 10.21273/hortsci.46.7.1022.

DOI: https://doi.org/10.21273/HORTSCI.46.7.1022

[33] C. Reeves, M. Tikkinen, T. Aronen, and J. Krajnakova. (2023). "Application of Cold Storage and Short In Vitro Germination for Somatic Embryos of Pinus radiata and P. sylvestris". Plants. 12 (11). 10.3390/plants12112095.

DOI: https://doi.org/10.3390/plants12112095

[34] C. E. Moore, K. Meacham-Hensold, P. Lemonnier, R. A. Slattery, C. Benjamin, C. J. Bernacchi, T. Lawson, A. P. Cavanagh, and R. Hancock. (2021). "The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems". Journal of Experimental Botany. 72 (8): 2822-2844. 10.1093/jxb/erab090.

DOI: https://doi.org/10.1093/jxb/erab090

[35] S. Kalve, D. De Vos, and G. T. S. Beemster. (2014). "Leaf development: a cellular perspective". Frontiers in Plant Science. 5. 10.3389/fpls.2014.00362.

DOI: https://doi.org/10.3389/fpls.2014.00362

[36] X. I. Ergasheva, Z. F. Ismailov, A. Y. Raxmatullayev, Y. S. Raxmatullayev, B. O. Davronov, and Y. B. Q. Raxmatillayeva. (2024). "Biotechnology of Organic Animal Waste Processing Based on<i> Eisenia Fetida</i> (Savigny, 1826)". Journal of Ecological Engineering. 25 (5): 70-78. 10.12911/22998993/185389.

DOI: https://doi.org/10.12911/22998993/185389

[37] N. Khodorova and M. Boitel-Conti. (2013). "The Role of Temperature in the Growth and Flowering of Geophytes". Plants. 2 (4): 699-711. 10.3390/plants2040699.

DOI: https://doi.org/10.3390/plants2040699

Downloads

Published

2025-07-26

How to Cite

[1]
K. Sultonova, “Optimization of In Vitro Microcloning of Lagochilus inebrians Bunge”, J. Multidiscip. Appl. Nat. Sci., Jul. 2025.

Issue

Section

Articles