Phytochemical Profiling, Antibacterial Properties and Toxicity of Amla Fruit Tea (Phyllanthus emblica L.): An In Vitro and In Silico Study
DOI:
https://doi.org/10.47352/jmans.2774-3047.284Keywords:
amla fruit tea, antimicrobial, phytochemicals, molecular docking, toxicity, LC-HRMS, tyrosyl-tRNA synthetase, FimH adhesinAbstract
Antimicrobial resistance represents a critical global health challenge, necessitating the exploration of alternative therapeutic agents. This study investigated the antimicrobial potential of amla fruit tea (Phyllanthus emblica L.) through comprehensive phytochemical characterization, antibacterial assessment, and computational modeling to identify potential mechanisms of action. LC-HRMS analysis was employed for phytochemical profiling, antibacterial activity was evaluated via disk diffusion method against Staphylococcus aureus and Escherichia coli, and molecular docking studies were conducted against tyrosyl-tRNA synthetase and FimH adhesin proteins. Analysis identified 89 bioactive compounds, with oxidized hydroxytetrahydrofuranyl acetate, L-α-palmitin, and ellagic acid predominating. Antibacterial activity against S. aureus and E. coli was evaluated via the disk diffusion method, revealing that moderate inhibition increased at higher concentrations (25%) and with extended exposure, with E. coli exhibiting greater susceptibility than S. aureus. Molecular docking studies against tyrosyl-tRNA synthetase (S. aureus) and FimH adhesin protein (E. coli) identified the W-18 benzenesulfonamide derivative as the most promising compound, which demonstrated strong binding affinities of -11.01 and -7.48 kcal/mol, respectively. While all five principal compounds met Lipinski's drug-likeness criteria, toxicological assessment revealed varying safety profiles, with two compounds classified as "possibly hazardous" and two as "toxic when swallowed." These findings suggest that amla fruit tea has antibacterial properties through two mechanisms: disruption of protein synthesis and bacterial adhesion. However, its efficacy remains considerably lower than that of conventional antibiotics, suggesting potential applications as complementary therapy rather than antibiotic replacement.
References
[1] R. P. Adiwinoto, I. M. D. M. Adnyana, S. Soedarsono, and T. Y. P. Gustam. (2024). "From Silos to Systems: Reimagining Zoonotic Neglected Tropical Disease Management through the Lens of One Health". Svāsthya: Trends in General Medicine and Public Health. 1 (3). 10.70347/svsthya.v1i3.61.
DOI: https://doi.org/10.70347/svsthya.v1i3.61[2] K. W. K. Tang, B. C. Millar, and J. E. Moore. (2023). "Antimicrobial Resistance (AMR)". British Journal of Biomedical Science. 80 : 11387. 10.3389/bjbs.2023.11387.
DOI: https://doi.org/10.3389/bjbs.2023.11387[3] S. K. Ahmed, S. Hussein, K. Qurbani, R. H. Ibrahim, A. Fareeq, K. A. Mahmood, and M. G. Mohamed. (2024). "Antimicrobial resistance: Impacts, challenges, and future prospects". Journal of Medicine, Surgery, and Public Health. 2. 10.1016/j.glmedi.2024.100081.
DOI: https://doi.org/10.1016/j.glmedi.2024.100081[4] I. M. D. M. Adnyana and N. L. G. Sudaryati. (2022). "Phytochemical Analysis of the Antioxidant Compounds of Baper Tea and Its Potential as an Immunomodulatory agent and Candidate for Standardized Herbal Medicine". Trends in Sciences. 20 (1). 10.48048/tis.2023.6391.
DOI: https://doi.org/10.48048/tis.2023.6391[5] P. Angelini. (2024). "Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance". Antibiotics (Basel). 13 (8). 10.3390/antibiotics13080746.
DOI: https://doi.org/10.3390/antibiotics13080746[6] T. I. Berida, Y. A. Adekunle, H. Dada-Adegbola, A. Kdimy, S. Roy, and S. D. Sarker. (2024). "Plant antibacterials: The challenges and opportunities". Heliyon. 10 (10): e31145. 10.1016/j.heliyon.2024.e31145.
DOI: https://doi.org/10.1016/j.heliyon.2024.e31145[7] N. Vaou, E. Stavropoulou, C. Voidarou, C. Tsigalou, and E. Bezirtzoglou. (2021). "Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives". Microorganisms. 9 (10). 10.3390/microorganisms9102041.
DOI: https://doi.org/10.3390/microorganisms9102041[8] H. Wang, Y. Chen, L. Wang, Q. Liu, S. Yang, and C. Wang. (2023). "Advancing herbal medicine: enhancing product quality and safety through robust quality control practices". Frontiers in Pharmacology. 14 : 1265178. 10.3389/fphar.2023.1265178.
DOI: https://doi.org/10.3389/fphar.2023.1265178[9] G. B. D. A. R. Collaborators. (2024). "Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050". Lancet. 404 (10459): 1199-1226. 10.1016/S0140-6736(24)01867-1.
DOI: https://doi.org/10.1016/S0140-6736(24)01867-1[10] D. V. Patangia, C. Anthony Ryan, E. Dempsey, R. Paul Ross, and C. Stanton. (2022). "Impact of antibiotics on the human microbiome and consequences for host health". Microbiologyopen. 11 (1): e1260. 10.1002/mbo3.1260.
DOI: https://doi.org/10.1002/mbo3.1260[11] Y. A. Helmy, K. Taha-Abdelaziz, H. A. E. Hawwas, S. Ghosh, S. S. AlKafaas, M. M. M. Moawad, E. M. Saied, Kassem, II, and A. M. M. Mawad. (2023). "Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens". Antibiotics (Basel). 12 (2). 10.3390/antibiotics12020274.
DOI: https://doi.org/10.3390/antibiotics12020274[12] M. A. Begum, R. Hossain, D. Jain, Y. Murti, K. K. Agrawal, P. Janmeda, I. C. P. Neto, H. D. M. Coutinho, A. Raposo, A. Saraiva, H. Han, B. Romao, P. Lisboa, P. Moreira, and M. T. Islam. (2024). "Recent Insights into the Antimicrobial Properties of Phyllanthus emblica L.: A Comprehensive Review of Wonder Berry". Chemistry & Biodiversity. 21 (9): e202400747. 10.1002/cbdv.202400747.
DOI: https://doi.org/10.1002/cbdv.202400747[13] K. Ralhan, K. A. Iyer, L. L. Diaz, R. Bird, A. Maind, and Q. A. Zhou. (2024). "Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies". ACS Infectious Diseases. 10 (5): 1483-1519. 10.1021/acsinfecdis.4c00115.
DOI: https://doi.org/10.1021/acsinfecdis.4c00115[14] S. Gantait, M. Mahanta, S. Bera, and S. K. Verma. (2021). "Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: a nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses". 3 Biotech. 11 (2): 62. 10.1007/s13205-020-02615-5.
DOI: https://doi.org/10.1007/s13205-020-02615-5[15] A. Kumar and A. Singh. (2022). "In-vitro evaluation of antimicrobial and antioxidant activity of Embelica officinalis extract on different strains on gram positive and negative bacteria". International journal of health sciences. 6591-6603. 10.53730/ijhs.v6nS5.10135.
DOI: https://doi.org/10.53730/ijhs.v6nS5.10135[16] G. Kumar, V. Madka, G. Pathuri, V. Ganta, and C. V. Rao. (2022). "Molecular Mechanisms of Cancer Prevention by Gooseberry (Phyllanthus emblica)". Nutrition and Cancer. 74 (7): 2291-2302. 10.1080/01635581.2021.2008988.
DOI: https://doi.org/10.1080/01635581.2021.2008988[17] N. Asmilia, Y. Fahrimal, M. Abrar, and R. Rinidar. (2020). "Chemical Compounds of Malacca Leaf (Phyllanthus emblica) after Triple Extraction with N-Hexane, Ethyl Acetate, and Ethanol". ScientificWorldJournal. 2020 : 2739056. 10.1155/2020/2739056.
DOI: https://doi.org/10.1155/2020/2739056[18] M. Gul, Z. W. Liu, H. Iahtisham Ul, R. Rabail, F. Faheem, N. Walayat, A. Nawaz, M. A. Shabbir, P. E. S. Munekata, J. M. Lorenzo, and R. M. Aadil. (2022). "Functional and Nutraceutical Significance of Amla (Phyllanthus emblica L.): A Review". Antioxidants (Basel). 11 (5). 10.3390/antiox11050816.
DOI: https://doi.org/10.3390/antiox11050816[19] H. Y. Li, C. F. Li, C. H. Liu, S. C. Chen, Y. F. Liu, Q. H. Lv, and W. Zhang. (2024). "Extract of Phyllanthus emblica L. fruit stimulates basal glucose uptake and ameliorates palmitate-induced insulin resistance through AMPK activation in C2C12 myotubes". BMC Complementary Medicine and Therapies. 24 (1): 296. 10.1186/s12906-024-04592-1.
DOI: https://doi.org/10.1186/s12906-024-04592-1[20] H.-f. Sun, Q. Lv, X. Ji, C. Fang, J.-x. Fei, X.-j. Liu, J.-x. Liu, and X.-h. Liu. (2023). "Three New Antioxidative Phenolics From Phyllanthus emblica L. Fruit". Natural Product Communications. 18 (3). 10.1177/1934578x231155717.
DOI: https://doi.org/10.1177/1934578X231155717[21] A. T. Prananda, A. Dalimunthe, U. Harahap, Y. Simanjuntak, E. Peronika, N. E. Karosekali, P. A. Z. Hasibuan, R. A. Syahputra, P. C. Situmorang, and F. Nurkolis. (2023). "Phyllanthus emblica: a comprehensive review of its phytochemical composition and pharmacological properties". Frontiers in Pharmacology. 14 : 1288618. 10.3389/fphar.2023.1288618.
DOI: https://doi.org/10.3389/fphar.2023.1288618[22] G. Li, Q. Yu, M. Li, D. Zhang, J. Yu, X. Yu, C. Xia, J. Lin, L. Han, and H. Huang. (2023). "Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management". Food & Function. 14 (17): 7738-7759. 10.1039/d3fo01671d.
DOI: https://doi.org/10.1039/D3FO01671D[23] B. C. Variya, A. K. Bakrania, and S. S. Patel. (2020). "Antidiabetic potential of gallic acid from Emblica officinalis: Improved glucose transporters and insulin sensitivity through PPAR-gamma and Akt signaling". Phytomedicine. 73 : 152906. 10.1016/j.phymed.2019.152906.
DOI: https://doi.org/10.1016/j.phymed.2019.152906[24] P. L. Cahyaningrum, S. A. Made Yuliari, and I. B. P. Suta. (2019). "Antidiabetic Activity Test Using Amla Fruit (Phyllanthus Emblica L) Extract in Alloxan-Induced Balb/C Mice". Journal of Vocational Health Studies. 3 (2). 10.20473/jvhs.V3.I2.2019.53-58.
DOI: https://doi.org/10.20473/jvhs.V3.I2.2019.53-58[25] P. L. Cahyaningrum. (2022). "Monograf buah amla (Phyllanthus emblica L.): khasiat antioksidan dalam sediaan dekokta dan loloh ayurveda". CV. Media Sains Indonesia, Bandung.
[26] B. Yang and P. Liu. (2014). "Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica". Journal of Agricultural and Food Chemistry. 62 (3): 529-41. 10.1021/jf404703k.
DOI: https://doi.org/10.1021/jf404703k[27] M. Darwin, M. R. Mamondol, S. A. Sormin, Y. Nurhayati, H. Tambunan, D. Sylvia, I. M. D. M. Adnyana, B. Prasetiyo, P. Vianitati, and A. A. Gebang. (2021). "Metode penelitian pendekatan kuantitatif". CV Media Sains Indonesia, Bandung.
[28] S. Pientaweeratch, V. Panapisal, and A. Tansirikongkol. (2016). "Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications". Pharmaceutical Biology. 54 (9): 1865-72. 10.3109/13880209.2015.1133658.
DOI: https://doi.org/10.3109/13880209.2015.1133658[29] S. R. Ganesh Moorthy, S. S. Kumar, K. Devandaran, S. Anguchamy, R. Ragunathan, and J. Johney. (2024). "Evaluation of the Antimicrobial, Antioxidant, and Cytotoxicity Against MCF-7 Breast Cancer Cell Lines of <i>Phyllanthus emblica</i> L. Bark Extract". Journal of Natural Remedies. 1091-1097. 10.18311/jnr/2024/36228.
DOI: https://doi.org/10.18311/jnr/2024/36228[30] M. A. A. Orabi, A. H. Hasan, S. F. AbouZid, D. El Amir, M. H. Hetta, A. A. A. Awadh, O. S. Alqahtani, T. Hatano, and M. A. El-Shanawany. (2023). "Nutritional, Antioxidant, Antimicrobial, and Anticholinesterase Properties of Phyllanthus emblica: A Study Supported by Spectroscopic and Computational Investigations". Metabolites. 13 (9). 10.3390/metabo13091013.
DOI: https://doi.org/10.3390/metabo13091013[31] P. Srinivasan, S. Vijayakumar, S. Kothandaraman, and M. Palani. (2018). "Anti-diabetic activity of quercetin extracted from Phyllanthus emblica L. fruit: In silico and in vivo approaches". Journal of Pharmaceutical Analysis. 8 (2): 109-118. 10.1016/j.jpha.2017.10.005.
DOI: https://doi.org/10.1016/j.jpha.2017.10.005[32] P. T. Khoa, P. B. Quy, D. T. M. Lien, N. K. P. Phung, and N. T. A. Tuyet. (2020). "Chemical study of the stem bark of Phyllanthus emblica (Phyllanthaceae)". Vietnam Journal of Chemistry. 58 (4): 559-564. 10.1002/vjch.202000004.
DOI: https://doi.org/10.1002/vjch.202000004[33] R. Tewari, V. Kumar, and H. K. Sharma. (2023). "Thermal and nonthermal processing of an underutilized fruit Emblica officinalis (Amla): a sustainable approach". Sustainable Food Technology. 1 (5): 658-680. 10.1039/d3fb00058c.
DOI: https://doi.org/10.1039/D3FB00058C[34] S. Beg, A. K. Nayak, K. Kohli, S. Swain, and M. S. Hasnain. (2012). "Antimicrobial activity assessment of time-dependent release bilayer tablets of amoxicillin trihydrate". Brazilian Journal of Pharmaceutical Sciences. 48 (2): 265-272. 10.1590/s1984-82502012000200010.
DOI: https://doi.org/10.1590/S1984-82502012000200010[35] R. Gonzalez-Pastor, S. E. Carrera-Pacheco, J. Zuniga-Miranda, C. Rodriguez-Polit, A. Mayorga-Ramos, L. P. Guaman, and C. Barba-Ostria. (2023). "Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts". Molecules. 28 (3). 10.3390/molecules28031068.
DOI: https://doi.org/10.3390/molecules28031068[36] N. Nazaruddin, R. Rosmaidar, T. N. Siregar, S. R. I. Wahyuni, and A. Sutriana. (2024). "Phytocomponents analysis and antioxidant activity of Malacca fruit extract (Phyllanthus emblica) using three different solvents". Biodiversitas Journal of Biological Diversity. 25 (5). 10.13057/biodiv/d250507.
DOI: https://doi.org/10.13057/biodiv/d250507[37] S. K. Khurana, R. Tiwari, K. Sharun, M. I. Yatoo, M. B. Gugjoo, and K. Dhama. (2019). "Emblica officinalis (Amla) with a Particular Focus on Its Antimicrobial Potentials: A Review". Journal of Pure and Applied Microbiology. 13 (4): 1995-2012. 10.22207/jpam.13.4.11.
DOI: https://doi.org/10.22207/JPAM.13.4.11[38] A. Agustiawan, I. M. D. M. Adnyana, A. Ashriady, Y. Paramata, T. Asrianti, L. E. Silalahi, M. Ulfa, L. F. V. Gunasari, S. B. K, R. Pakaya, B. Yulianto, and M. Sandalayuk. (2022). "Epidemiologi Penyakit Menular". CV. Media Sains Indonesia, Bandung.
[39] D. Saxena, R. Maitra, R. Bormon, M. Czekanska, J. Meiers, A. Titz, S. Verma, and S. Chopra. (2023). "Tackling the outer membrane: facilitating compound entry into Gram-negative bacterial pathogens". npj Antimicrobials and Resistance. 1 (1): 17. 10.1038/s44259-023-00016-1.
DOI: https://doi.org/10.1038/s44259-023-00016-1[40] J. C. Stephani, L. Gerhards, B. Khairalla, I. A. Solov'yov, and I. Brand. (2024). "How do Antimicrobial Peptides Interact with the Outer Membrane of Gram-Negative Bacteria? Role of Lipopolysaccharides in Peptide Binding, Anchoring, and Penetration". ACS Infectious Diseases. 10 (2): 763-778. 10.1021/acsinfecdis.3c00673.
DOI: https://doi.org/10.1021/acsinfecdis.3c00673[41] N. K. Charmkar and R. Singh. (2017). "Emblica officinalis Gaertn. (Amla): A Wonder Gift of Nature to Humans". International Journal of Current Microbiology and Applied Sciences. 6 (7): 4267-4280. 10.20546/ijcmas.2017.607.442.
DOI: https://doi.org/10.20546/ijcmas.2017.607.442[42] M. Nguse, Y. Yang, Z. Fu, J. Xu, L. Ma, and D. Bu. (2022). "Phyllanthus emblica (Amla) Fruit Powder as a Supplement to Improve Preweaning Dairy Calves' Health: Effect on Antioxidant Capacity, Immune Response, and Gut Bacterial Diversity". Biology (Basel). 11 (12). 10.3390/biology11121753.
DOI: https://doi.org/10.3390/biology11121753[43] X. Yan, Q. Li, L. Jing, S. Wu, W. Duan, Y. Chen, D. Chen, and X. Pan. (2022). "Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus". Frontiers in Pharmacology. 13 : 1017268. 10.3389/fphar.2022.1017268.
DOI: https://doi.org/10.3389/fphar.2022.1017268[44] L. Z. Benet, C. M. Hosey, O. Ursu, and T. I. Oprea. (2016). "BDDCS, the Rule of 5 and drugability". Advanced Drug Delivery Reviews. 101 : 89-98. 10.1016/j.addr.2016.05.007.
DOI: https://doi.org/10.1016/j.addr.2016.05.007[45] R. P. Das, S. Sahoo, S. K. Paidesetty, I. Ahmad, B. Sahoo, C. Jayabaskaran, H. Patel, M. Arakha, and A. K. Pradhan. (2024). "Isolation, characterization, and multimodal evaluation of novel glycolipid biosurfactant derived from Bacillus species: A promising Staphylococcus aureus tyrosyl-tRNA synthetase inhibitor through molecular docking and MD simulations". International Journal of Biological Macromolecules. 261 (Pt 2): 129848. 10.1016/j.ijbiomac.2024.129848.
DOI: https://doi.org/10.1016/j.ijbiomac.2024.129848[46] A. F. Mohammed, S. A. Othman, O. F. Abou-Ghadir, A. A. Kotb, Y. A. Mostafa, M. A. El-Mokhtar, and H. H. M. Abdu-Allah. (2024). "Design, synthesis, biological evaluation and docking study of some new aryl and heteroaryl thiomannosides as FimH antagonists". Bioorganic Chemistry. 145 : 107258. 10.1016/j.bioorg.2024.107258.
DOI: https://doi.org/10.1016/j.bioorg.2024.107258[47] E. H. Mood, A. Japoni-Nejad, M. A. Karam, M. Pooya, S. Bouzari, and N. Shahrokhi. (2021). "Evaluation of accessible regions of Escherichia coli fimH mRNA through computational prediction and experimental investigation". Iranian Journal of Microbiology. 13 (5): 653-663. 10.18502/ijm.v13i5.7430.
DOI: https://doi.org/10.18502/ijm.v13i5.7430[48] M. A. Sharif, A. M. Khan, R. Salekeen, M. H. Rahman, S. Mahmud, S. Bibi, P. Biswas, M. Nazmul Hasan, K. M. D. Islam, S. M. M. Rahman, M. E. Islam, A. Alshammari, M. Alharbi, and A. Hayee. (2023). "Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence". Saudi Pharmaceutical Journal. 31 (8): 101681. 10.1016/j.jsps.2023.06.014.
DOI: https://doi.org/10.1016/j.jsps.2023.06.014[49] N. E. Hatton, C. G. Baumann, and M. A. Fascione. (2021). "Developments in Mannose-Based Treatments for Uropathogenic Escherichia coli-Induced Urinary Tract Infections". Chembiochem. 22 (4): 613-629. 10.1002/cbic.202000406.
DOI: https://doi.org/10.1002/cbic.202000406[50] F. Scaglione, P. Minghetti, F. Ambrosio, B. Ernst, V. Ficarra, M. Gobbi, K. Naber, and H. Schellekens. (2023). "Nature of the Interaction of Alpha-D-Mannose and Escherichia coli Bacteria, and Implications for its Regulatory Classification. A Delphi Panel European Consensus Based on Chemistry and Legal Evidence". Therapeutic Innovation & Regulatory Science. 57 (6): 1153-1166. 10.1007/s43441-023-00548-8.
DOI: https://doi.org/10.1007/s43441-023-00548-8[51] S. Vanwetswinkel, A. N. Volkov, Y. G. Sterckx, A. Garcia-Pino, L. Buts, W. F. Vranken, J. Bouckaert, R. Roy, L. Wyns, and N. A. van Nuland. (2014). "Study of the structural and dynamic effects in the FimH adhesin upon alpha-d-heptyl mannose binding". Journal of Medicinal Chemistry. 57 (4): 1416-27. 10.1021/jm401666c.
DOI: https://doi.org/10.1021/jm401666c[52] M. Degreef, P. Blanckaert, E. M. Berry, A. L. N. van Nuijs, and K. E. Maudens. (2019). "Determination of ocfentanil and W-18 in a suspicious heroin-like powder in Belgium". Forensic Toxicology. 37 (2): 474-479. 10.1007/s11419-019-00480-3.
DOI: https://doi.org/10.1007/s11419-019-00480-3[53] C. G. Monteferrante, A. Jirgensons, V. Varik, V. Hauryliuk, W. H. Goessens, and J. P. Hays. (2016). "Evaluation of the characteristics of leucyl-tRNA synthetase (LeuRS) inhibitor AN3365 in combination with different antibiotic classes". European Journal of Clinical Microbiology & Infectious Diseases. 35 (11): 1857-1864. 10.1007/s10096-016-2738-1.
DOI: https://doi.org/10.1007/s10096-016-2738-1[54] V. Sharma, A. Heer, N. Kour, and S. Sharma. (2023). "Antibacterial efficacy of amla leaves". International Journal of Pharmaceutical Chemistry and Analysis. 10 (3): 205-208. 10.18231/j.ijpca.2023.034.
DOI: https://doi.org/10.18231/j.ijpca.2023.034[55] Y. Jin, S. Jana, M. E. Abbasov, and H. Lin. (2025). "Antibiotic target discovery by integrated phenotypic and activity-based profiling of electrophilic fragments". Cell Chemical Biology. 32 (3): 434-448 e9. 10.1016/j.chembiol.2025.02.001.
DOI: https://doi.org/10.1016/j.chembiol.2025.02.001[56] G. Muteeb, M. T. Rehman, M. Shahwan, and M. Aatif. (2023). "Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review". Pharmaceuticals (Basel). 16 (11): 10.3390/ph16111615.
DOI: https://doi.org/10.3390/ph16111615Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Putu Lakustini Cahyaningrum, Ni Luh Gede Sudaryati, Ni Wayan Bogoriani, Ida Ayu Raka Astiti Asih, I Made Dwi Mertha Adnyana, Putut Dewantha Jenar

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.
Funding data
-
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Grant numbers 110/E5/PG.02.00.PL/2024