Design of Hydroxyxanthone Derivatives as Breast Cancer Inhibitors: A QSAR Modeling, Molecular Docking, Molecular Dynamics, MM-PBSA and ADMET Prediction

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.283

Keywords:

QSAR, molecular docking, molecular dynamics, hydroxyxanthone, MM-PBSA, ADMET

Abstract

A comprehensive QSAR analysis, in conjunction with molecular docking, molecular dynamics simulations, MM-PBSA binding energy estimations, and ADMET profiling, was conducted to facilitate the development of novel anticancer agents based on hydroxyxanthone derivatives. Molecular and electronic descriptors were calculated using the DFT method with the 3-21G basis set. The best QSAR model identified several descriptors that significantly influence anticancer activity, including the atomic charges at positions C1, C3, C4a, and C7, as well as the highest occupied molecular orbital (HOMO), surface area (SA), molecular volume (VOL), and molecular weight (MW). This model was used to design novel hydroxyxanthone derivatives (X27 to X47). The docking result showed that compounds 7-bromo-3-hydroxy-1-(methylamino)-9H-xanthen-9-one (X43), 6-hydroxy-8-(methylamino)-9-oxo-9H-xanthene-2-carbonitrile (X44), and 3-hydroxy-7-mercapto-1-(methylamino)-9H-xanthen-9-one (X45) had stronger binding energy values than gefitinib as a native ligand. Gefitinib had a binding energy of -6.84 kcal/mol, while those compounds had values of -6.92, -7.12, and -6.92 kcal/mol, respectively. In a molecular dynamics simulation of 100 ns, compounds X43, X44, and X45 exhibited stability comparable to that of gefitinib against the EGFR protein. Additionally, the binding energy MM-PBSA of compound X43 was the lowest (-29.18 kcal/mol), followed by X44 (-27.11 kcal/mol), gefitinib (-26.06 kcal/mol), and X45 (-25.21 kcal/mol). Furthermore, these compounds met Lipinski's rule parameters and the minimal standard parameters in terms of ADMET characteristics, as predicted by physicochemical properties. In conclusion, compounds X43, X44, and X45 are potential anticancer agents for MDA-MB-231 breast cancer cells.

References

[1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal. (2022). "Cancer statistics, 2022". CA: A Cancer Journal for Clinicians. 72 (1): 7-33. 10.3322/caac.21708.

[2] R. Dolatkhah, M. H. Somi, M. A. Jafarabadi, M. Hosseinalifam, S. Sepahi, M. Belalzadeh, M. Nezamdoust, and S. Dastgiri. (2020). "Breast Cancer Survival and Incidence: 10 Years Cancer Registry Data in the Northwest, Iran". International Journal of Breast Cancer. 2020 : 1963814. 10.1155/2020/1963814.

DOI: https://doi.org/10.1155/2020/1963814

[3] K. Hu, J. H. Law, A. Fotovati, and S. E. Dunn. (2012). "Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells". Breast Cancer Research. 14 (1): R22. 10.1186/bcr3107.

DOI: https://doi.org/10.1186/bcr3107

[4] G. Palma, G. Frasci, A. Chirico, E. Esposito, C. Siani, C. Saturnino, C. Arra, G. Ciliberto, A. Giordano, and M. D'Aiuto. (2015). "Triple negative breast cancer: looking for the missing link between biology and treatments". Oncotarget. 6 (29): 26560-74. 10.18632/oncotarget.5306.

DOI: https://doi.org/10.18632/oncotarget.5306

[5] P. De Cicco, M. V. Catani, V. Gasperi, M. Sibilano, M. Quaglietta, and I. Savini. (2019). "Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence". Nutrients. 11 (7). 10.3390/nu11071514.

[6] Y. S. Kurniawan, H. Amrulloh, E. Yudha, N. Fatmasari, F. Hermawan, A. Fitria, H. D. Pranowo, E. N. Sholikhah, and J. Jumina. (2024). "Evaluation of Xanthone and Cinnamoylbenzene as Anticancer Agents for Breast Cancer Cell Lines through In Vitro and In Silico Assays". Journal of Multidisciplinary Applied Natural Science. 5 (1): 87-102. 10.47352/jmans.2774-3047.231.

DOI: https://doi.org/10.47352/jmans.2774-3047.231

[7] C. Lefebvre and A. L. Allan. (2021). "Anti-proliferative and anti-migratory effects of EGFR and c-Met tyrosine kinase inhibitors in triple negative breast cancer cells". Precision Cancer Medicine. 4 : 2-2. 10.21037/pcm-20-62.

[8] R. H. Li, W. H. Huang, J. D. Wu, C. W. Du, and G. J. Zhang. (2017). "EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas". Oncology Letters. 13 (2): 695-703. 10.3892/ol.2016.5489.

[9] J. Verma, V. M. Khedkar, and E. C. Coutinho. (2010). "3D-QSAR in drug design--a review". Current Topics in Medicinal Chemistry. 10 (1): 95-115. 10.2174/156802610790232260.

[10] Y. S. Kurniawan, N. Fatmasari, J. Jumina, H. D. Pranowo, and E. N. Sholikhah. (2023). "Evaluation of The Anticancer Activity of Hydroxyxanthones Against Human Liver Carcinoma Cell Line". Journal of Multidisciplinary Applied Natural Science. 4 (1): 1-15. 10.47352/jmans.2774-3047.165.

[11] M. S. Badar, S. Shamsi, J. Ahmed, and M. A. Alam. (2022). In: "Transdisciplinarity, (Integrated Science, ch. Chapter 7". 131-151. 10.1007/978-3-030-94651-7_7.

[12] S. H. Abdullahi, A. Uzairu, G. A. Shallangwa, S. Uba, and A. B. Umar. (2022). "In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line". Bulletin of the National Research Centre. 46 (1). 10.1186/s42269-021-00690-z.

DOI: https://doi.org/10.1186/s42269-021-00690-z

[13] Y. S. Kurniawan, K. T. A. Priyangga, Jumina, H. D. Pranowo, E. N. Sholikhah, A. K. Zulkarnain, H. A. Fatimi, and J. Julianus. (2021). "An Update on the Anticancer Activity of Xanthone Derivatives: A Review". Pharmaceuticals (Basel). 14 (11).  10.3390/ph14111144.

[14] Q. G. Su, Y. Liu, Y. C. Cai, Y. L. Sun, B. Wang, and L. J. Xian. (2011). "Anti-tumour effects of xanthone derivatives and the possible mechanisms of action". Investigational New Drugs. 29 (6): 1230-40. 10.1007/s10637-010-9468-5.

[15] C. Liu, M. Zhang, Z. Zhang, S. B. Zhang, S. Yang, A. Zhang, L. Yin, S. Swarts, S. Vidyasagar, L. Zhang, and P. Okunieff. (2016). "Synthesis and anticancer potential of novel xanthone derivatives with 3,6-substituted chains". Bioorganic & Medicinal Chemistry. 24 (18): 4263-4271. 10.1016/j.bmc.2016.07.020.

DOI: https://doi.org/10.1016/j.bmc.2016.07.020

[16] G.-p. Song, S.-m. Li, H.-z. Si, Y.-b. Li, Y.-s. Li, J.-h. Fan, Q.-q. Liang, H.-b. He, H.-m. Ye, and Z.-n. Cui. (2015). "Synthesis and bioactivity of novel xanthone and thioxanthone l-rhamnopyranosides". RSC Advances. 5 (45): 36092-36103. 10.1039/c5ra02846a.

[17] P. Cheng, L. Zhu, W. Guo, W. Liu, J. Yao, G. Dong, Y. Zhang, C. Zhuang, C. Sheng, Z. Miao, and W. Zhang. (2012). "Synthesis of novel benzoxanthone analogues as non-Camptothecin topoisomerase I inhibitors". Journal of Enzyme Inhibition and Medicinal Chemistry. 27 (3): 437-42. 10.3109/14756366.2011.595712.

[18] J. Liu, J. Zhang, H. Wang, Z. Liu, C. Zhang, Z. Jiang, and H. Chen. (2017). "Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them". European Journal of Medicinal Chemistry. 133 : 50-61. 10.1016/j.ejmech.2017.03.068.

[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. J. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. Fox.(2013). "Gaussian-09 Revision D.01". Wallingford CT: Gaussian Inc.

[20] D. B. de Oliveira and A. C. Gaudio. (2000). "BuildQSAR: A New Computer Program for QSAR Analysis". Quantitative Structure-Activity Relationships. 19 (6): 599-601. 10.1002/1521-3838(200012)19:6<599::Aid-qsar599>3.0.Co;2-b.

[21] S. Shayanfar and A. Shayanfar. (2022). "Comparison of various methods for validity evaluation of QSAR models". BMC Chemistry. 16 (1): 63. 10.1186/s13065-022-00856-4.

[22] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin. (2004). "UCSF Chimera--a visualization system for exploratory research and analysis". Journal of Computational Chemistry. 25 (13): 1605-12. 10.1002/jcc.20084.

[23] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. (2009). "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility". Journal of Computational Chemistry. 30 (16): 2785-91. 10.1002/jcc.21256.

[24] J. Fuhrmann, A. Rurainski, H. P. Lenhof, and D. Neumann. (2010). "A new Lamarckian genetic algorithm for flexible ligand-receptor docking". Journal of Computational Chemistry. 31 (9): 1911-8. 10.1002/jcc.21478.

[25] D. S. Biovia.(2019). "Discovery Studio Visualizer". San Diego.

[26] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. (2008). "GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation". Journal of Chemical Theory and Computation. 4 (3): 435-47. 10.1021/ct700301q.

[27] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl. (2013). "GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit". Bioinformatics. 29 (7): 845-54. 10.1093/bioinformatics/btt055.

DOI: https://doi.org/10.1093/bioinformatics/btt055

[28] J. Huang and A. D. MacKerell, Jr. (2013). "CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data". Journal of Computational Chemistry. 34 (25): 2135-45. 10.1002/jcc.23354.

[29] L. Verlet. (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules". Physical Review. 159 (1): 98-103. 10.1103/PhysRev.159.98.

[30] P. H. Hünenberger. (2005). In: "Advanced Computer Simulation, (Advances in Polymer Science, ch. Chapter 2". 105-149. 10.1007/b99427.

[31] R. Martonak, A. Laio, and M. Parrinello. (2003). "Predicting crystal structures: the Parrinello-Rahman method revisited". Physical Review Letters. 90 (7): 075503. 10.1103/PhysRevLett.90.075503.

[32] R. Kumari, R. Kumar, C. Open Source Drug Discovery, and A. Lynn. (2014). "g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations". Journal of Chemical Information and Modeling. 54 (7): 1951-62. 10.1021/ci500020m.

[33] D. E. Pires, T. L. Blundell, and D. B. Ascher. (2015). "pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures". Journal of Medicinal Chemistry. 58 (9): 4066-72. 10.1021/acs.jmedchem.5b00104.

[34] A. Kunduracioglu. (2023). "A Computational (DFT) Study on the Anti-Malarial Drug: Lumefantrine". Applied Sciences. 13 (16). 10.3390/app13169219.

[35] K. El Khatabi, I. Aanouz, R. El-Mernissi, A. K. Singh, M. A. Ajana, T. Lakhlifi, S. Kumar, and M. Bouachrine. (2021). "Integrated 3D-QSAR, molecular docking, and molecular dynamics simulation studies on 1,2,3-triazole based derivatives for designing new acetylcholinesterase inhibitors". Turkish Journal of Chemistry. 45 (3): 647-660. 10.3906/kim-2010-34.

DOI: https://doi.org/10.3906/kim-2010-34

[36] H. Rasyid, N. Hariani Soekamto, Seniwati, S. Firdausiah, and Firdaus. (2023). "Modelling the Anticancer Activity of 4-Alkoxy Cinnamic Analogues using 3D-Descriptors and Genetic Algorithm-Multiple Linear Regression (GA-MLR) Method". Journal of King Saud University - Science. 35 (3). 10.1016/j.jksus.2022.102514.

DOI: https://doi.org/10.1016/j.jksus.2022.102514

[37] S. Y. Ho, K. Phua, L. Wong, and W. W. Bin Goh. (2020). "Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability". Patterns (NY). 1 (8): 100129. 10.1016/j.patter.2020.100129.

DOI: https://doi.org/10.1016/j.patter.2020.100129

[38] I. Miladiyah, J. Jumina, S. M. Haryana, and M. Mustofa. (2018). "Biological activity, quantitative structure-activity relationship analysis, and molecular docking of xanthone derivatives as anticancer drugs". Drug Design, Development and Therapy. 12 : 149-158. 10.2147/DDDT.S149973.

DOI: https://doi.org/10.2147/DDDT.S149973

[39] H. Y. Guo, Z. A. Chen, Q. K. Shen, and Z. S. Quan. (2021). "Application of triazoles in the structural modification of natural products". Journal of Enzyme Inhibition and Medicinal Chemistry. 36 (1): 1115-1144. 10.1080/14756366.2021.1890066.

[40] T. A. Balogun, N. Ipinloju, O. T. Abdullateef, S. I. Moses, D. A. Omoboyowa, A. C. James, O. A. Saibu, W. F. Akinyemi, and E. A. Oni. (2021). "Computational Evaluation of Bioactive Compounds from Colocasia affinis Schott as a Novel EGFR Inhibitor for Cancer Treatment". Cancer Informatics. 20 : 11769351211049244. 10.1177/11769351211049244.

DOI: https://doi.org/10.1177/11769351211049244

[41] O. Sawatdichaikul, S. Hannongbua, C. Sangma, P. Wolschann, and K. Choowongkomon. (2012). "In silico screening of epidermal growth factor receptor (EGFR) in the tyrosine kinase domain through a medicinal plant compound database". Journal of Molecular Modeling. 18 (3): 1241-54. 10.1007/s00894-011-1135-z.

DOI: https://doi.org/10.1007/s00894-011-1135-z

[42] D. Ramirez and J. Caballero. (2018). "Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?". Molecules. 23 (5). 10.3390/molecules23051038.

[43] L. R. C. Suyo, J. P. Paulin, N. C. L. L. Gapaz, M. B. S. Arevalo, V. T. P. Yongco, and L. A. Santiago. (2024). "Molecular Docking, Pharmacological Profiling, and Molecular Dynamics Simulation of Potential Antihyperuricemic Agent from Secondary Metabolites of Dillenia philippinensis Rolfe (Dilleniaceae)". Karbala International Journal of Modern Science. 10 (3). 10.33640/2405-609x.3364.

DOI: https://doi.org/10.33640/2405-609X.3364

[44] J. Ribas, E. Cubero, F. J. Luque, and M. Orozco. (2002). "Theoretical study of alkyl-pi and aryl-pi interactions. Reconciling theory and experiment". Journal of Organic Chemistry. 67 (20): 7057-65. 10.1021/jo0201225.

[45] S. Li, X. Zhou, W. Dong, M. Liu, W. Wang, Z. Zhao, L. Zhang, D. Yang, Y. Lu, and G. Du. (2025). "Regulating the physical and chemical properties of gefitinib and its positional isomer through salt formation". Journal of Molecular Structure. 132210.1016/j.molstruc.2024.140328.

[46] R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, and F. M. Boeckler. (2013). "Principles and applications of halogen bonding in medicinal chemistry and chemical biology". Journal of Medicinal Chemistry. 56 (4): 1363-88. 10.1021/jm3012068.

[47] P. Pandarangga, Y. Simarmata, A. B. H. Liu, and D. A. F. Haryati. (2024). "In silico simulation of hyperoside, isoquercetin, quercetin, and quercitrin as potential antivirals against the pNP868R protein of African swine fever virus". Veterinary World. 17 (1): 171-178. 10.14202/vetworld.2024.171-178.

DOI: https://doi.org/10.14202/vetworld.2024.171-178

[48] A. Hospital, J. R. Goni, M. Orozco, and J. L. Gelpi. (2015). "Molecular dynamics simulations: advances and applications". Advances and Applications in Bioinformatics and Chemistry. 8 37-47. 10.2147/AABC.S70333.

[49] S. Roy, B. Maiti, N. Banerjee, M. H. Kaulage, K. Muniyappa, S. Chatterjee, and S. Bhattacharya. (2023). "New Xanthone Derivatives as Potent G-Quadruplex Binders for Developing Anti-Cancer Therapeutics". ACS Pharmacol Transl Sci. 6 (4): 546-566. 10.1021/acsptsci.2c00205.

[50] I. Sriyanti, D. Edikresnha, A. Rahma, M. M. Munir, H. Rachmawati, and K. Khairurrijal. (2017). "Correlation between Structures and Antioxidant Activities of Polyvinylpyrrolidone/Garcinia mangostana L. Extract Composite Nanofiber Mats Prepared Using Electrospinning". Journal of Nanomaterials. 2017 : 1-10. 10.1155/2017/9687896.

DOI: https://doi.org/10.1155/2017/9687896

[51] I. H. Eissa, R. G.Yousef, H. Elkady, E. B. Elkaeed, A. A. Alsfouk, D. Z. Husein, I. M. Ibrahim, M. A. Asmaey, and A. M. Metwaly. (2023). "A new anticancer derivative of the natural alkaloid, theobromine, as an EGFR inhibitor and apoptosis inducer". Theoretical Chemistry Accounts. 143 (1). 10.1007/s00214-023-03071-z.

[52] S. Wan, R. Yan, Y. Jiang, Z. Li, J. Zhang, and X. Wu. (2019). "Insight into binding mechanisms of EGFR allosteric inhibitors using molecular dynamics simulations and free energy calculations". The Journal of Biomolecular Structure and Dynamics. 37 (16): 4384-4394. 10.1080/07391102.2018.1552197.

[53] Y. S. Kurniawan, E. Yudha, G. Nugraha, N. Fatmasari, H. D. Pranowo, J. Jumina, and E. N. Sholikhah. (2024). "Molecular Docking and Molecular Dynamic Investigations of Xanthone-Chalcone Derivatives against Epidermal Growth Factor Receptor for Preliminary Discovery of Novel Anticancer Agent". Indonesian Journal of Chemistry.24 (1). 10.22146/ijc.88449.

DOI: https://doi.org/10.22146/ijc.88449

[54] S. Alam and F. Khan. (2018). "Virtual screening, Docking, ADMET and System Pharmacology studies on Garcinia caged Xanthone derivatives for Anticancer activity". Scientific Reports. 8 (1): 5524. 10.1038/s41598-018-23768-7.

[55] C. A. Lipinski. (2004). "Lead- and drug-like compounds: the rule-of-five revolution". Drug Discov Today Technol.1 (4): 337-41. 10.1016/j.ddtec.2004.11.007.

[56] A. Belkadi, S. Kenouche, N. Melkemi, I. Daoud, and R. Djebaili. (2022). "Molecular docking/dynamic simulations, MEP, ADME-TOX-based analysis of xanthone derivatives as CHK1 inhibitors". Structural Chemistry. 33(3): 833-858. 10.1007/s11224-022-01898-z.

DOI: https://doi.org/10.1007/s11224-022-01898-z

Downloads

Published

2025-07-22

How to Cite

[1]
N. Fatmasari, “Design of Hydroxyxanthone Derivatives as Breast Cancer Inhibitors: A QSAR Modeling, Molecular Docking, Molecular Dynamics, MM-PBSA and ADMET Prediction”, J. Multidiscip. Appl. Nat. Sci., Jul. 2025.

Issue

Section

Articles