Biosynthesis of Silver Nanoparticles from Callistephus chinensis Flower Waste: Evaluation of Antibacterial, Anticancer, and Contaminated Water Remediation Applications

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.282

Keywords:

antibacterial, anticancer, flower waste, green synthesis, silver nanoparticles, water treatment

Abstract

The present study explored antibacterial and anticancer properties of silver nanoparticles (AgNPs) uniquely synthesized using aster (Callistephus chinensis) flower waste (AFW) via a microwave-assisted approach. The nanoparticles were also tested for their effectiveness in treating coliform-contaminated borewell water. The AFW extract was characterized using LC-HRMS and quantitatively analysis using TPC and TFC assays. Nanoparticle characterization was performed using UV-spectroscopy, FT-IR, SEM, EDX, TEM, SAED and XRD instruments. The AFW extract showed 1.6687 mg of gallic acid equivalent (GAE) and 9.71 mg quercetin equivalent TPC and TFC, respectively. The LC-HRMS profile also revealed the presence of various polyphenols followed by organic acids and alkaloids. The minimum inhibitory concentration required to inhibit 90% of bacterial growth (MIC90) was determined against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The cytotoxic activity of AgNPs was analyzed against cervical cancer cell line HeLa and normal human dermal fibroblast (HDF) cells. AgNPs exhibited a strong antibacterial activity, with MIC90 of 0.0625 mg/mL against E. coli and P. aeruginosa, and 0.125 mg/mL against S. aureus. Nanoparticle treatment did not alter the physicochemical parameters of borewell water beyond their permissible limits. According to MPN analysis, untreated borewell water contained 1600 coliforms/100 mL, which were eliminated following nanoparticle treatment (0 coliforms/100mL). AgNPs displayed anticancer activity against HeLa cell lines with an inhibitory concentration (IC50) of 0.21 mg/mL. The IC50 of AgNPs against normal HDF cells was 0.414 mg/mL — higher than that observed against HeLa cell lines and the bacterial MIC90, thus indicating selective cytotoxicity. To conclude, the study demonstrated the promising use of AFW in the green synthesis of AgNPs, which exhibited potent antibacterial and anticancer properties, along with low toxicity to HDF cell lines. These AgNPs also demonstrated promising applications in treating coliform-contaminated borewell water.

References

[1] K. A. Altammar. (2023). "A review on nanoparticles: characteristics, synthesis, applications, and challenges". Frontiers in Microbiology. 14 : 1155622. 10.3389/fmicb.2023.1155622.

DOI: https://doi.org/10.3389/fmicb.2023.1155622

[2] R. Revathy, J. Joseph, C. Augustine, T. Sajini, and B. Mathew. (2022). "Synthesis and catalytic applications of silver nanoparticles: a sustainable chemical approach using indigenous reducing and capping agents from Hyptis capitata". Environmental Science: Advances. 1 (4): 491-505. 10.1039/d2va00044j.

DOI: https://doi.org/10.1039/D2VA00044J

[3] D. C. Lekha, R. Shanmugam, K. Madhuri, L. P. Dwarampudi, M. Bhaskaran, D. Kongara, J. L. Tesfaye, N. Nagaprasad, V. L. N. Bhargavi, R. Krishnaraj, and L. R. (2021). "Review on Silver Nanoparticle Synthesis Method, Antibacterial Activity, Drug Delivery Vehicles, and Toxicity Pathways: Recent Advances and Future Aspects". Journal of Nanomaterials. 2021 : 1-11. 10.1155/2021/4401829.

DOI: https://doi.org/10.1155/2021/4401829

[4] L. Xu, Y. Y. Wang, J. Huang, C. Y. Chen, Z. X. Wang, and H. Xie. (2020). "Silver nanoparticles: Synthesis, medical applications and biosafety". Theranostics. 10 (20): 8996-9031. 10.7150/thno.45413.

DOI: https://doi.org/10.7150/thno.45413

[5] N. Joudeh and D. Linke. (2022). "Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists". Journal of Nanobiotechnology. 20 (1): 262. 10.1186/s12951-022-01477-8.

DOI: https://doi.org/10.1186/s12951-022-01477-8

[6] D. M. Metwally, R. A. Alajmi, M. F. El-Khadragy, and S. Al-Quraishy. (2020). "Silver Nanoparticles Biosynthesized With Salvia officinalis Leaf Exert Protective Effect on Hepatic Tissue Injury Induced by Plasmodium chabaudi". Frontiers in Veterinary Science. 7 : 620665. 10.3389/fvets.2020.620665.

DOI: https://doi.org/10.3389/fvets.2020.620665

[7] H. I. O. Gomes, C. S. M. Martins, and J. A. V. Prior. (2021). "Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells". Nanomaterials (Basel). 11 (4). 10.3390/nano11040964.

DOI: https://doi.org/10.3390/nano11040964

[8] R. Vishwanath and B. Negi. (2021). "Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties". Current Research in Green and Sustainable Chemistry. 4. 10.1016/j.crgsc.2021.100205.

DOI: https://doi.org/10.1016/j.crgsc.2021.100205

[9] B. Venkataesan Kumari, R. Mani, B. R. Asokan, K. Balakrishnan, A. Ramasamy, R. Parthasarathi, C. Kandasamy, R. Govindaraj, N. Vijayakumar, and S. Vijayakumar. (2023). "Green Synthesised Silver Nanoparticles Using Anoectochilus elatus Leaf Extract: Characterisation and Evaluation of Antioxidant, Anti-Inflammatory, Antidiabetic, and Antimicrobial Activities". Journal of Composites Science. 7 (11).  10.3390/jcs7110453.

DOI: https://doi.org/10.3390/jcs7110453

[10] Y. Li, Y. Jin, X. He, Y. Tang, M. Zhou, W. Guo, and W. Miao. (2022). "Cyclo(RGD) peptide-decorated silver nanoparticles with anti-platelet potential for active platelet-rich thrombus targeting". Nanomedicine. 41 : 102520. 10.1016/j.nano.2022.102520.

DOI: https://doi.org/10.1016/j.nano.2022.102520

[11] P. Li, D. Karunanidhi, T. Subramani, and K. Srinivasamoorthy. (2021). "Sources and Consequences of Groundwater Contamination". Archives of Environmental Contamination and Toxicology. 80 (1): 1-10. 10.1007/s00244-020-00805-z.

DOI: https://doi.org/10.1007/s00244-020-00805-z

[12] R. A. Kristanti, T. Hadibarata, M. Syafrudin, M. Yılmaz, and S. Abdullah. (2022). "Microbiological Contaminants in Drinking Water: Current Status and Challenges". Water, Air, & Soil Pollution. 233 (8). 10.1007/s11270-022-05698-3.

DOI: https://doi.org/10.1007/s11270-022-05698-3

[13] P. K. Pandey, P. H. Kass, M. L. Soupir, S. Biswas, and V. P. Singh. (2014). "Contamination of water resources by pathogenic bacteria". AMB Express. 4 : 51. 10.1186/s13568-014-0051-x.

DOI: https://doi.org/10.1186/s13568-014-0051-x

[14] N. V. Reddy, H. Li, T. Hou, M. S. Bethu, Z. Ren, and Z. Zhang. (2021). "Phytosynthesis of Silver Nanoparticles Using Perilla frutescens Leaf Extract: Characterization and Evaluation of Antibacterial, Antioxidant, and Anticancer Activities". International Journal of Nanomedicine. 16 : 15-29. 10.2147/IJN.S265003.

DOI: https://doi.org/10.2147/IJN.S265003

[15] J. Kadam, P. Dhawal, S. Barve, and S. Kakodkar. (2020). "Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing". SN Applied Sciences. 2 (4). 10.1007/s42452-020-2543-4.

DOI: https://doi.org/10.1007/s42452-020-2543-4

[16] S. Iravani. (2014). "Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects". International Scholarly Research Notices. 2014 : 359316. 10.1155/2014/359316.

DOI: https://doi.org/10.1155/2014/359316

[17] C. Hano and B. H. Abbasi. (2021). "Plant-Based Green Synthesis of Nanoparticles: Production, Characterization and Applications". Biomolecules. 12 (1).  10.3390/biom12010031.

DOI: https://doi.org/10.3390/biom12010031

[18] N. M. Alabdallah and M. M. Hasan. (2021). "Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants". Saudi Journal of Biological Sciences. 28 (10): 5631-5639. 10.1016/j.sjbs.2021.05.081.

DOI: https://doi.org/10.1016/j.sjbs.2021.05.081

[19] M. Pirsaheb, T. Gholami, H. Seifi, E. A. Dawi, E. A. Said, A. M. Hamoody, U. S. Altimari, and M. Salavati-Niasari. (2024). "Green synthesis of nanomaterials by using plant extracts as reducing and capping agents". Environmental Science and Pollution Research. 31 (17): 24768-24787. 10.1007/s11356-024-32983-x.

DOI: https://doi.org/10.1007/s11356-024-32983-x

[20] C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, B. Changmai, and S. L. Rokhum. (2021). "Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature". RSC Advances. 11 (5): 2804-2837. 10.1039/d0ra09941d.

DOI: https://doi.org/10.1039/D0RA09941D

[21] M. S. Waghmode, A. B. Gunjal, N. N. Nawani, and N. N. Patil. (2016). "Management of Floral Waste by Conversion to Value-Added Products and Their Other Applications". Waste and Biomass Valorization. 9 (1): 33-43. 10.1007/s12649-016-9763-2.

DOI: https://doi.org/10.1007/s12649-016-9763-2

[22] A. L. Srivastav and A. Kumar. (2021). "An endeavor to achieve sustainable development goals through floral waste management: A short review". Journal of Cleaner Production. 283. 10.1016/j.jclepro.2020.124669.

DOI: https://doi.org/10.1016/j.jclepro.2020.124669

[23] A. Nair, A. Kelkar, S. Kshirsagar, A. Harekar, K. Satardekar, S. Barve, and S. Kakodkar. (2018). "Extraction of natural dye from waste flowers of Aster (Aster chinensis) and studying its potential application as pH indicator".Journal of Innovations in Pharmaceutical and Biological Sciences. 5 : 1-4.

[24] S. A. Kakodkar, S. N. Kshirsagar, A. S. Kelkar, A. M. Nair, P. P. Dhawal, K. V. Satardekar, and S. S. Barve. (2019). "Evaluation of phytochemical constituents, antioxidant property, DNA damage inhibition activity and cytotoxicity of aster (Callistephus chinensis) flower waste". World Journal of Pharmaceutical Research. 8 : 977-991.

[25] I. Ashraf, A. Agarwal, N. B. Singh, and M. B. Ray. (2023). "Floral waste synthesized silver nanoparticles as sensor for Cr (VI) ion detection". Environmental Monitoring and Assessment. 195 (6): 671. 10.1007/s10661-023-11342-2.

DOI: https://doi.org/10.1007/s10661-023-11342-2

[26] J. B. Johnson, J. S. Mani, and M. Naiker. (2023). "Microplate Methods for Measuring Phenolic Content and Antioxidant Capacity in Chickpea: Impact of Shaking". Engineering Proceedings. 48 (1): 57. 10.3390/CSAC2023-15167.

DOI: https://doi.org/10.3390/CSAC2023-15167

[27] A. Fatiqin, H. Amrulloh, W. Simanjuntak, I. Apriani, R. A. H. T. Amelia, S. Syarifah, R. N. Sunarti, and A. R. P. Raharjeng. (2021). "Characteristics of nano-size MgO prepared using aqueous extract of different parts of Moringa oleifera plant as green synthesis agents". AIP Conference Proceedings.  10.1063/5.0041999.

DOI: https://doi.org/10.1063/5.0041999

[28] N. A. Rahim, M. N. F. Roslan, M. Muhamad, and A. Seeni. (2022). "Antioxidant Activity, Total Phenolic and Flavonoid Content and LC–MS Profiling of Leaves Extracts of Alstonia angustiloba". Separations. 9 (9). 10.3390/separations9090234.

DOI: https://doi.org/10.3390/separations9090234

[29] N. Sanchooli, S. Saeidi, H. K. Barani, and E. Sanchooli. (2018). "In vitro antibacterial effects of silver nanoparticles synthesized using Verbena officinalis leaf extract on Yersinia ruckeri, Vibrio cholera and Listeria monocytogenes". Iranian Journal of Microbiology. 10 : 400-408.

[30] F. Mallevre, C. Alba, C. Milne, S. Gillespie, T. F. Fernandes, and T. J. Aspray. (2016). "Toxicity Testing of Pristine and Aged Silver Nanoparticles in Real Wastewaters Using Bioluminescent Pseudomonas putida". Nanomaterials (Basel). 6 (3). 10.3390/nano6030049.

DOI: https://doi.org/10.3390/nano6030049

[31] A. O. Edegbene, D. Yandev, T. O. Omotehinwa, H. Zakari, and B. O. Andy. (2025). "Water quality assessment in Benue South, Nigeria: An investigation of physico-chemical and microbial characteristics". Water Science. 39 (1): 279-290. 10.1080/23570008.2025.2483013.

DOI: https://doi.org/10.1080/23570008.2025.2483013

[32] P. J. Utgikar, J. H. Kadam, S. J. Rambhiya, V. M. Inamdar, P. D. Nagda, S. S. Barve, and P. P. Dhawal. (2022). "Titanium Dioxide and Its Effect on Human Health and Environment- An in vitro Study". European Journal of Biology and Biotechnology. 3 (2): 20-24. 10.24018/ejbio.2022.3.2.352.

DOI: https://doi.org/10.24018/ejbio.2022.3.2.352

[33] V. Vichai and K. Kirtikara. (2006). "Sulforhodamine B colorimetric assay for cytotoxicity screening". Nature Protocols. 1 (3): 1112-6. 10.1038/nprot.2006.179.

DOI: https://doi.org/10.1038/nprot.2006.179

[34] F. Rodriguez-Felix, A. G. Lopez-Cota, M. J. Moreno-Vasquez, A. Z. Graciano-Verdugo, I. E. Quintero-Reyes, C. L. Del-Toro-Sanchez, and J. A. Tapia-Hernandez. (2021). "Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity". Heliyon. 7 (4): e06923. 10.1016/j.heliyon.2021.e06923.

DOI: https://doi.org/10.1016/j.heliyon.2021.e06923

[35] F. Zia, N. Ghafoor, M. Iqbal, and S. Mehboob. (2016). "Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract". Applied Nanoscience. 6 (7): 1023-1029. 10.1007/s13204-016-0517-z.

DOI: https://doi.org/10.1007/s13204-016-0517-z

[36] Y. He, Z. Du, H. Lv, Q. Jia, Z. Tang, X. Zheng, K. Zhang, and F. Zhao. (2013). "Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel". International Journal of Nanomedicine. 8 : 1809-15. 10.2147/IJN.S43289.

DOI: https://doi.org/10.2147/IJN.S43289

[37] S. Devanesan and M. S. AlSalhi. (2021). "Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies". International Journal of Nanomedicine. 16 : 3343-3356. 10.2147/IJN.S307676.

DOI: https://doi.org/10.2147/IJN.S307676

[38] O. Sabira, A. P. Ajaykumar, S. R. Varma, K. N. Jayaraj, M. Kotakonda, P. Kumar, P. Vaikkathillam, V. Sivadasan Binitha, A. P. Alen, A. V. Raghu, and K. V. Zeena. (2025). "Nepenthes pitcher fluid for the green synthesis of silver nanoparticles with biofilm inhibition, anticancer and antioxidant properties". Scientific Reports. 15 (1): 5349. 10.1038/s41598-025-89212-9.

DOI: https://doi.org/10.1038/s41598-025-89212-9

[39] A. Wirwis and Z. Sadowski. (2023). "Green Synthesis of Silver Nanoparticles: Optimizing Green Tea Leaf Extraction for Enhanced Physicochemical Properties". ACS Omega. 8 (33): 30532-30549. 10.1021/acsomega.3c03775.

DOI: https://doi.org/10.1021/acsomega.3c03775

[40] A. S. Folorunso. (2019). "Characterization And Antimicrobial Investigation Of Synthesized Silver Nanoparticles From Annona Muricata Leaf Extracts". Nanotechnology Nanomedicine & Nanobiotechnology. 6 (1): 1-5. 10.24966/ntmb-2044/100022.

DOI: https://doi.org/10.24966/NTMB-2044/100022

[41] J. Santhoshkumar, S. Rajeshkumar, and S. Venkat Kumar. (2017). "Phyto-assisted synthesis, characterization and applications of gold nanoparticles - A review". Biochemistry and Biophysics Reports. 11 : 46-57.10.1016/j.bbrep.2017.06.004.

DOI: https://doi.org/10.1016/j.bbrep.2017.06.004

[42] O. Velgosova, S. Dolinska, H. Podolska, L. Macak, and E. Cizmarova. (2024). "Impact of Plant Extract Phytochemicals on the Synthesis of Silver Nanoparticles". Materials (Basel). 17 (10). 10.3390/ma17102252.

DOI: https://doi.org/10.3390/ma17102252

[43] P. Devaraj, P. Kumari, C. Aarti, and A. Renganathan. (2013). "Synthesis and Characterization of Silver Nanoparticles Using Cannonball Leaves and Their Cytotoxic Activity against MCF-7 Cell Line". Journal of Nanotechnology. 2013 : 1-5. 10.1155/2013/598328.

DOI: https://doi.org/10.1155/2013/598328

[44] K. Roy, C. K. Sarkar, and C. K. Ghosh. (2014). "Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract". Applied Nanoscience. 5 (8): 953-959. 10.1007/s13204-014-0392-4.

DOI: https://doi.org/10.1007/s13204-014-0392-4

[45] S. Jain and M. S. Mehata. (2017). "Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property". Scientific Reports. 7 (1): 15867. 10.1038/s41598-017-15724-8.

DOI: https://doi.org/10.1038/s41598-017-15724-8

[46] M. Bhusal, I. Pathak, A. Bhadel, D. K. Shrestha, and K. R. Sharma. (2024). "Synthesis of silver nanoparticles assisted by aqueous root and leaf extracts of Rhus chinensis Mill and its antibacterial activity". Heliyon. 10 (13): e33603. 10.1016/j.heliyon.2024.e33603.

DOI: https://doi.org/10.1016/j.heliyon.2024.e33603

[47] F. Lalsangpuii, S. L. Rokhum, F. Nghakliana, L. Fakawmi, J. V. L. Ruatpuia, E. Laltlanmawii, R. Lalfakzuala, and Z. Siama. (2022). "Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton's Lymphoma Ascites (DLA)-Bearing Mice". ACS Omega. 7 (48): 44346-44359. 10.1021/acsomega.2c05970.

DOI: https://doi.org/10.1021/acsomega.2c05970

[48] K. Okaiyeto, M. O. Ojemaye, H. Hoppe, L. V. Mabinya, and A. I. Okoh. (2019). "Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of Oedera genistifolia: Characterization and Antibacterial Potential". Molecules. 24 (23). 10.3390/molecules24234382.

DOI: https://doi.org/10.3390/molecules24234382

[49] B. R. Jany, A. Janas, and F. Krok. (2017). "Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning". Nano Letters. 17(11): 6520-6525. 10.1021/acs.nanolett.7b01789.

DOI: https://doi.org/10.1021/acs.nanolett.7b01789

[50] N. S. Swidan, Y. A. Hashem, W. F. Elkhatib, and M. A. Yassien. (2022). "Antibiofilm activity of green synthesized silver nanoparticles against biofilm associated enterococcal urinary pathogens". Scientific Reports. 12 (1): 3869. 10.1038/s41598-022-07831-y.

DOI: https://doi.org/10.1038/s41598-022-07831-y

[51] I. A. M. Ali, A. B. Ahmed, and H. I. Al-Ahmed. (2023). "Green synthesis and characterization of silver nanoparticles for reducing the damage to sperm parameters in diabetic compared to metformin". Scientific Reports. 13 (1): 2256. 10.1038/s41598-023-29412-3.

DOI: https://doi.org/10.1038/s41598-023-29412-3

[52] A. Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh, H. Sharghi, and R. Hazan. (2015). "The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram‐Positive and Gram‐Negative Bacteria: A Preliminary Study". Journal of Nanomaterials. 2015 (1).  10.1155/2015/720654.

DOI: https://doi.org/10.1155/2015/720654

[53] M. Ozdal and S. Gurkok. (2022). "Recent advances in nanoparticles as antibacterial agent". ADMET and DMPK.10 (2): 115-129. 10.5599/admet.1172.

DOI: https://doi.org/10.5599/admet.1172

[54] S. Shaikh, N. Nazam, S. M. D. Rizvi, K. Ahmad, M. H. Baig, E. J. Lee, and I. Choi. (2019). "Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance". International Journal of Molecular Sciences. 20 (10). 10.3390/ijms20102468.

DOI: https://doi.org/10.3390/ijms20102468

[55] M. Singh, S. Singh, S. Prasad, and I. Gambhir. (2008). "Nanotechnology in medicine and antibacterial effect of silver nanoparticles". Digest Journal of Nanomaterials and Biostructures. 3 (3): 115-122.

[56] P. R. More, S. Pandit, A. Filippis, G. Franci, I. Mijakovic, and M. Galdiero. (2023). "Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens". Microorganisms. 11 (2). 10.3390/microorganisms11020369.

DOI: https://doi.org/10.3390/microorganisms11020369

[57] N. Paracini, E. Schneck, A. Imberty, and S. Micciulla. (2022). "Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane". Advances in Colloid and Interface Science. 301 : 102603. 10.1016/j.cis.2022.102603.

DOI: https://doi.org/10.1016/j.cis.2022.102603

[58] E. O. Mikhailova. (2020). "Silver Nanoparticles: Mechanism of Action and Probable Bio-Application". Journal of Functional Biomaterials. 11 (4). 10.3390/jfb11040084.

DOI: https://doi.org/10.3390/jfb11040084

[59] R. R. Krishnan, K. Dharmaraj, and B. D. R. Kumari. (2007). "A comparative study on the physicochemical and bacterial analysis of drinking, borewell and sewage water in the three different places of Sivakasi". Journal of Environmental Biology. 28 : 105-108.

[60] S. Some, R. Mondal, D. Mitra, D. Jain, D. Verma, and S. Das. (2021). "Microbial pollution of water with special reference to coliform bacteria and their nexus with environment". Energy Nexus. 1. 10.1016/j.nexus.2021.100008.

DOI: https://doi.org/10.1016/j.nexus.2021.100008

[61] M. Morais, A. L. Teixeira, F. Dias, V. Machado, R. Medeiros, and J. A. V. Prior. (2020). "Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer". Journal of Medicinal Chemistry. 63 (23): 14308-14335. 10.1021/acs.jmedchem.0c01055.

DOI: https://doi.org/10.1021/acs.jmedchem.0c01055

[62] H. S. Hussein, C. Ngugi, F. M. Tolo, and E. N. Maina. (2024). "Anticancer potential of silver nanoparticles biosynthesized using Catharanthus roseus leaves extract on cervical (HeLa229) cancer cell line". Scientific African. 2510.1016/j.sciaf.2024.e02268.

DOI: https://doi.org/10.1016/j.sciaf.2024.e02268

[63] X. Liu, K. Shan, X. Shao, X. Shi, Y. He, Z. Liu, J. A. Jacob, and L. Deng. (2021). "Nanotoxic Effects of Silver Nanoparticles on Normal HEK-293 Cells in Comparison to Cancerous HeLa Cell Line". International Journal of Nanomedicine. 16 : 753-761. 10.2147/IJN.S289008.

DOI: https://doi.org/10.2147/IJN.S289008

[64] R. Sukirtha, K. M. Priyanka, J. J. Antony, S. Kamalakkannan, R. Thangam, P. Gunasekaran, M. Krishnan, and S. Achiraman. (2012). "Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model". Process Biochemistry. 47 (2): 273-279. 10.1016/j.procbio.2011.11.003.

DOI: https://doi.org/10.1016/j.procbio.2011.11.003

Downloads

Published

2025-07-19

How to Cite

[1]
S. Kakodkar, P. Dhawal, J. Kadam, R. Khan, P. Shewale, and T. Chaukekar, “Biosynthesis of Silver Nanoparticles from Callistephus chinensis Flower Waste: Evaluation of Antibacterial, Anticancer, and Contaminated Water Remediation Applications”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 3, pp. 763–782, Jul. 2025.