The Nature of Processes Affecting the Solubility, Viscosity, and Density Characteristics of Aqueous Electrolyte Systems

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.281

Keywords:

solubility, viscosity, density, aqueous electrolyte systems, hydrated ions

Abstract

This study investigates the key factors influencing the solubility, viscosity, and density of aqueous electrolyte systems. Model solutions of types 1-1, 1-2, 2-1, and 2-2 electrolytes were examined across a wide concentration range. The results show that solubility increases with temperature due to a higher proportion of free water molecules, while greater electrolyte concentrations lead to a rise in viscosity and density. It was found that ion radius and charge density strongly impact solution properties: larger ion radii and lower charge densities decrease viscosity and increase density, whereas smaller radii and higher charge densities have the opposite effect. The findings offer new insights into the relationship between ionic parameters and macroscopic solution behavior, supported by mathematical modeling and graphical analysis.

References

[1] D. C. Kabiraz, T. K. Biswas, and M. Entazul Huque. (2011). "Physico-chemical properties of some electrolytes in water and aqueous sodiumdodecyl sulfate solutions at different temperatures". The Journal of Chemical Thermodynamics. 43 (12): 1917-1923. 10.1016/j.jct.2011.06.024.

DOI: https://doi.org/10.1016/j.jct.2011.06.024

[2] M. Huque, I. A. Siddiquey, and M. N. Uddin. (2006). "Physico-chemical study of aqueous solutions of electrolytes in mixed solvents". The Journal of Chemical Thermodynamics. 38 (11): 1474-1478. 10.1016/j.jct.2006.01.002.

DOI: https://doi.org/10.1016/j.jct.2006.01.002

[3] A. A. Zavitsas. (2001). "Properties of Water Solutions of Electrolytes and Nonelectrolytes". The Journal of Physical Chemistry B. 105 (32): 7805-7817. 10.1021/jp011053l.

DOI: https://doi.org/10.1021/jp011053l

[4] C. Q. Sun and Y. Sun. (2016). In: "The Attribute of Water, (Springer Series in Chemical Physics, ch. 12" . 305-363. 10.1007/978-981-10-0180-2_12.

DOI: https://doi.org/10.1007/978-981-10-0180-2_12

[5] M. Kanduc, A. Schlaich, E. Schneck, and R. R. Netz. (2016). "Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces". Langmuir. 32 (35): 8767-82. 10.1021/acs.langmuir.6b01727.

DOI: https://doi.org/10.1021/acs.langmuir.6b01727

[6] G. Oshanin, M. N. Popescu, and S. Dietrich. (2017). "Active colloids in the context of chemical kinetics". Journal of Physics A: Mathematical and Theoretical. 50 (13).  10.1088/1751-8121/aa5e91.

DOI: https://doi.org/10.1088/1751-8121/aa5e91

[7] I. A. Kirilenko. (2018). "Water–Electrolyte Glass-Forming Systems: A Review". Russian Journal of Inorganic Chemistry. 63 (13): 1731-1745. 10.1134/s0036023618130053.

DOI: https://doi.org/10.1134/S0036023618130053

[8] M. Arshad, A. Easa, H. Qiblawey, M. Nasser, A. Benamor, R. Bhosale, and M. Al-Ghouti. (2020). "Experimental measurements and modelling of viscosity and density of calcium and potassium chlorides ternary solutions". Scientific Reports. 10 (1): 16312. 10.1038/s41598-020-73484-4.

DOI: https://doi.org/10.1038/s41598-020-73484-4

[9] S. M. Saqib Nadeem. (2022). "Viscometric Study of Ionic Interactions of MgSO4 in Water and Water–Ethanol Mixtures at Different Temperatures". Russian Journal of Physical Chemistry A. 96 (4): 849-859. 10.1134/s0036024422040306.

DOI: https://doi.org/10.1134/S0036024422040306

[10] U. Hoffert, L. André, G. Blöcher, S. Guignot, A. Lassin, H. Milsch, and I. Sass. (2024). "Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data". Geothermal Energy. 12 (1). 10.1186/s40517-024-00318-1.

DOI: https://doi.org/10.1186/s40517-024-00318-1

[11] H.-l. Li, W.-n. Xu, F.-f. Jia, J.-b. Li, S.-x. Song, and Y. Nahmad. (2020). "Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review". International Journal of Minerals, Metallurgy and Materials. 27 (7): 857-871. 10.1007/s12613-020-2078-0.

DOI: https://doi.org/10.1007/s12613-020-2078-0

[12] H. Al-Salih and Y. Abu-Lebdeh. (2024). "Investigating the phase diagram-ionic conductivity isotherm relationship in aqueous solutions of common acids: hydrochloric, nitric, sulfuric and phosphoric acid". Scientific Reports. 14 (1): 7894. 10.1038/s41598-024-56552-x.

DOI: https://doi.org/10.1038/s41598-024-56552-x

[13] D. Połomski and M. Chotkowski. (2023). "Choline chloride-acetic acid mixture as a medium for the investigation of the electrochemical processes". Journal of Solid State Electrochemistry. 28 (5): 1463-1474. 10.1007/s10008-023-05590-y.

DOI: https://doi.org/10.1007/s10008-023-05590-y

[14] M. Mosher and P. Kelter. (2023). In: "An Introduction to Chemistry, ch. 12". 553-586. 10.1007/978-3-030-90267-4_12.

DOI: https://doi.org/10.1007/978-3-030-90267-4_12

[15] M. R. Becker, R. R. Netz, P. Loche, D. J. Bonthuis, D. Mouhanna, and H. Berthoumieux. (2025). "Dielectric Properties of Aqueous Electrolytes at the Nanoscale". Physical Review Letters. 134 (15): 158001. 10.1103/PhysRevLett.134.158001.

DOI: https://doi.org/10.1103/PhysRevLett.134.158001

[16] S. H. Yalkowsky, Y. He, and P. Jain. (2016). "Handbook of Aqueous Solubility Data. 10.1201/ebk1439802458.

DOI: https://doi.org/10.1201/EBK1439802458

[17] R. Tiwari, D. Kumar, D. K. Verma, K. Parwati, P. Ranjan, R. Rai, S. Krishnamoorthi, and R. Khan. (2024). "Fundamental chemical and physical properties of electrolytes in energy storage devices: A review". Journal of Energy Storage. 8110.1016/j.est.2023.110361.

DOI: https://doi.org/10.1016/j.est.2023.110361

[18] S. Porcedda, M. Usula, and B. Marongiu. (2014). In: "The Structure of Ionic Liquids, (Soft and Biological Matter, ch. 7". 173-193. 10.1007/978-3-319-01698-6_7.

DOI: https://doi.org/10.1007/978-3-319-01698-6_7

[19] K. N. Marsh, J. A. Boxall, and R. Lichtenthaler. (2004). "Room temperature ionic liquids and their mixtures—a review". Fluid Phase Equilibria. 219 (1): 93-98. 10.1016/j.fluid.2004.02.003.

DOI: https://doi.org/10.1016/j.fluid.2004.02.003

[20] V. N. Makhlaichuk and N. P. Malomuzh. (2022). "Peculiarities of structure in aqueous electrolyte solutions and specificity of hydration effects". Journal of Molecular Liquids. 349. 10.1016/j.molliq.2021.118088.

DOI: https://doi.org/10.1016/j.molliq.2021.118088

[21] M. Laliberté and W. E. Cooper. (2004). "Model for Calculating the Density of Aqueous Electrolyte Solutions". Journal of Chemical & Engineering Data. 49 (5): 1141-1151. 10.1021/je0498659.

DOI: https://doi.org/10.1021/je0498659

[22] M. Amiri and D. Belanger. (2021). "Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes". ChemSusChem. 14 (12): 2487-2500. 10.1002/cssc.202100550.

DOI: https://doi.org/10.1002/cssc.202100550

Downloads

Published

2025-07-17

How to Cite

[1]
G. Kambarova, U. Nazarbek, S. Nazarbekova, P. Abdurazova, and Y. Raiymbekov, “The Nature of Processes Affecting the Solubility, Viscosity, and Density Characteristics of Aqueous Electrolyte Systems”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 3, pp. 744–762, Jul. 2025.

Funding data