The Nature of Processes Affecting the Solubility, Viscosity, and Density Characteristics of Aqueous Electrolyte Systems
DOI:
https://doi.org/10.47352/jmans.2774-3047.281Keywords:
solubility, viscosity, density, aqueous electrolyte systems, hydrated ionsAbstract
This study investigates the key factors influencing the solubility, viscosity, and density of aqueous electrolyte systems. Model solutions of types 1-1, 1-2, 2-1, and 2-2 electrolytes were examined across a wide concentration range. The results show that solubility increases with temperature due to a higher proportion of free water molecules, while greater electrolyte concentrations lead to a rise in viscosity and density. It was found that ion radius and charge density strongly impact solution properties: larger ion radii and lower charge densities decrease viscosity and increase density, whereas smaller radii and higher charge densities have the opposite effect. The findings offer new insights into the relationship between ionic parameters and macroscopic solution behavior, supported by mathematical modeling and graphical analysis.
References
[1] D. C. Kabiraz, T. K. Biswas, and M. Entazul Huque. (2011). "Physico-chemical properties of some electrolytes in water and aqueous sodiumdodecyl sulfate solutions at different temperatures". The Journal of Chemical Thermodynamics. 43 (12): 1917-1923. 10.1016/j.jct.2011.06.024.
DOI: https://doi.org/10.1016/j.jct.2011.06.024[2] M. Huque, I. A. Siddiquey, and M. N. Uddin. (2006). "Physico-chemical study of aqueous solutions of electrolytes in mixed solvents". The Journal of Chemical Thermodynamics. 38 (11): 1474-1478. 10.1016/j.jct.2006.01.002.
DOI: https://doi.org/10.1016/j.jct.2006.01.002[3] A. A. Zavitsas. (2001). "Properties of Water Solutions of Electrolytes and Nonelectrolytes". The Journal of Physical Chemistry B. 105 (32): 7805-7817. 10.1021/jp011053l.
DOI: https://doi.org/10.1021/jp011053l[4] C. Q. Sun and Y. Sun. (2016). In: "The Attribute of Water, (Springer Series in Chemical Physics, ch. 12" . 305-363. 10.1007/978-981-10-0180-2_12.
DOI: https://doi.org/10.1007/978-981-10-0180-2_12[5] M. Kanduc, A. Schlaich, E. Schneck, and R. R. Netz. (2016). "Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces". Langmuir. 32 (35): 8767-82. 10.1021/acs.langmuir.6b01727.
DOI: https://doi.org/10.1021/acs.langmuir.6b01727[6] G. Oshanin, M. N. Popescu, and S. Dietrich. (2017). "Active colloids in the context of chemical kinetics". Journal of Physics A: Mathematical and Theoretical. 50 (13). 10.1088/1751-8121/aa5e91.
DOI: https://doi.org/10.1088/1751-8121/aa5e91[7] I. A. Kirilenko. (2018). "Water–Electrolyte Glass-Forming Systems: A Review". Russian Journal of Inorganic Chemistry. 63 (13): 1731-1745. 10.1134/s0036023618130053.
DOI: https://doi.org/10.1134/S0036023618130053[8] M. Arshad, A. Easa, H. Qiblawey, M. Nasser, A. Benamor, R. Bhosale, and M. Al-Ghouti. (2020). "Experimental measurements and modelling of viscosity and density of calcium and potassium chlorides ternary solutions". Scientific Reports. 10 (1): 16312. 10.1038/s41598-020-73484-4.
DOI: https://doi.org/10.1038/s41598-020-73484-4[9] S. M. Saqib Nadeem. (2022). "Viscometric Study of Ionic Interactions of MgSO4 in Water and Water–Ethanol Mixtures at Different Temperatures". Russian Journal of Physical Chemistry A. 96 (4): 849-859. 10.1134/s0036024422040306.
DOI: https://doi.org/10.1134/S0036024422040306[10] U. Hoffert, L. André, G. Blöcher, S. Guignot, A. Lassin, H. Milsch, and I. Sass. (2024). "Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data". Geothermal Energy. 12 (1). 10.1186/s40517-024-00318-1.
DOI: https://doi.org/10.1186/s40517-024-00318-1[11] H.-l. Li, W.-n. Xu, F.-f. Jia, J.-b. Li, S.-x. Song, and Y. Nahmad. (2020). "Correlation between surface charge and hydration on mineral surfaces in aqueous solutions: A critical review". International Journal of Minerals, Metallurgy and Materials. 27 (7): 857-871. 10.1007/s12613-020-2078-0.
DOI: https://doi.org/10.1007/s12613-020-2078-0[12] H. Al-Salih and Y. Abu-Lebdeh. (2024). "Investigating the phase diagram-ionic conductivity isotherm relationship in aqueous solutions of common acids: hydrochloric, nitric, sulfuric and phosphoric acid". Scientific Reports. 14 (1): 7894. 10.1038/s41598-024-56552-x.
DOI: https://doi.org/10.1038/s41598-024-56552-x[13] D. Połomski and M. Chotkowski. (2023). "Choline chloride-acetic acid mixture as a medium for the investigation of the electrochemical processes". Journal of Solid State Electrochemistry. 28 (5): 1463-1474. 10.1007/s10008-023-05590-y.
DOI: https://doi.org/10.1007/s10008-023-05590-y[14] M. Mosher and P. Kelter. (2023). In: "An Introduction to Chemistry, ch. 12". 553-586. 10.1007/978-3-030-90267-4_12.
DOI: https://doi.org/10.1007/978-3-030-90267-4_12[15] M. R. Becker, R. R. Netz, P. Loche, D. J. Bonthuis, D. Mouhanna, and H. Berthoumieux. (2025). "Dielectric Properties of Aqueous Electrolytes at the Nanoscale". Physical Review Letters. 134 (15): 158001. 10.1103/PhysRevLett.134.158001.
DOI: https://doi.org/10.1103/PhysRevLett.134.158001[16] S. H. Yalkowsky, Y. He, and P. Jain. (2016). "Handbook of Aqueous Solubility Data. 10.1201/ebk1439802458.
DOI: https://doi.org/10.1201/EBK1439802458[17] R. Tiwari, D. Kumar, D. K. Verma, K. Parwati, P. Ranjan, R. Rai, S. Krishnamoorthi, and R. Khan. (2024). "Fundamental chemical and physical properties of electrolytes in energy storage devices: A review". Journal of Energy Storage. 81. 10.1016/j.est.2023.110361.
DOI: https://doi.org/10.1016/j.est.2023.110361[18] S. Porcedda, M. Usula, and B. Marongiu. (2014). In: "The Structure of Ionic Liquids, (Soft and Biological Matter, ch. 7". 173-193. 10.1007/978-3-319-01698-6_7.
DOI: https://doi.org/10.1007/978-3-319-01698-6_7[19] K. N. Marsh, J. A. Boxall, and R. Lichtenthaler. (2004). "Room temperature ionic liquids and their mixtures—a review". Fluid Phase Equilibria. 219 (1): 93-98. 10.1016/j.fluid.2004.02.003.
DOI: https://doi.org/10.1016/j.fluid.2004.02.003[20] V. N. Makhlaichuk and N. P. Malomuzh. (2022). "Peculiarities of structure in aqueous electrolyte solutions and specificity of hydration effects". Journal of Molecular Liquids. 349. 10.1016/j.molliq.2021.118088.
DOI: https://doi.org/10.1016/j.molliq.2021.118088[21] M. Laliberté and W. E. Cooper. (2004). "Model for Calculating the Density of Aqueous Electrolyte Solutions". Journal of Chemical & Engineering Data. 49 (5): 1141-1151. 10.1021/je0498659.
DOI: https://doi.org/10.1021/je0498659[22] M. Amiri and D. Belanger. (2021). "Physicochemical and Electrochemical Properties of Water-in-Salt Electrolytes". ChemSusChem. 14 (12): 2487-2500. 10.1002/cssc.202100550.
DOI: https://doi.org/10.1002/cssc.202100550Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Galiya Kambarova, Ulzhalgas Nazarbek, Saule Nazarbekova, Perizat Abdurazova, Yerkebulan Raiymbekov

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.
Funding data
-
Ministry of Education and Science of the Republic of Kazakhstan
Grant numbers АР23487663