Assessment of the Dynamics and Condition of Post-Fire Forest Recovery in the Amankaragay Massif, Kostanay Region, Republic of Kazakhstan

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.276

Keywords:

forest, dynamics, post-fire forest recovery, pyrogenic succession, remote sensing of the earth, Kostanay region

Abstract

The study evaluates the dynamics and condition of post-fire forest recovery in the Amankaragay massif of the Kostanay region, Republic of Kazakhstan, which has been subjected to both natural and anthropogenic pyrogenic influences, resulting in structural transformations within the forest ecosystems and pyrogenic succession processes. The objective of this research is to assess natural forest regeneration after wildfires through an integrated approach, combining field studies and remote sensing data, and to analyze structural changes in forest landscapes due to fire disturbances. Three sample plots were selected for analysis: all affected by wildfires between 2004 and 2024, with assessments carried out using high- and medium-resolution satellite imagery. The methodology included the use of differenced normalized burn ratio (dNBR) analysis to assess fire severity, normalized difference vegetation index (NDVI) analysis to evaluate the intensity and dynamics of post-fire vegetation recovery, and geospatial analysis using ArcGIS 10.8. Additionally, supervised classification of satellite imagery and field surveys were conducted to validate remote sensing data. The results indicate significant structural changes in forest-forming species following fire disturbances, confirmed by both remote sensing and field data. As a result, the natural regeneration of forest ecosystems was evaluated, and significant findings were obtained. Fire intensity and type influence the rate of forest recovery. The dNBR and NDVI analyses confirm the effectiveness of remote sensing for monitoring post-fire forest recovery. Remote sensing data and field assessments enable not only the evaluation of the current forest condition but also predictions for its future development. This study underscores the effectiveness of remote sensing techniques in evaluating pyrogenic succession and contributes to a deeper understanding of natural forest regeneration processes in the region. The findings can inform the development of evidence-based strategies for forest ecosystem management and post-fire restoration efforts.

References

[1] M. A. Sofronov and A. V. Volokitina. (2007). "Methods of pyrological examination and description of forest areas covered by fires". Sukachev Institute of Forestry.  

[2] M. Drüke, B. Sakschewski, W. von Bloh, M. Billing, W. Lucht, and K. Thonicke. (2023). "Fire may prevent future Amazon forest recovery after large-scale deforestation". Communications Earth & Environment. 4 (1). 10.1038/s43247-023-00911-5.

DOI: https://doi.org/10.1038/s43247-023-00911-5

[3] R. Nedkov. (2018). "Quantitative Assessment Of Forest Degradation After Fire Using Ortogonalized Satellite Images From Sentinel-2". Comptes rendus de l’Acade'mie bulgare des Sciences. 71 (1): 83-86. 10.7546/grabs2018.1.11.

DOI: https://doi.org/10.7546/GRABS2018.1.11

[4] M. I. Budykо.(1974)." Climate Change". Gidrometeoizdat, Leningrad.

[5] K. T. Davis, S. Z. Dobrowski, Z. A. Holden, P. E. Higuera, and J. T. Abatzoglou. (2018). "Microclimatic buffering in forests of the future: the role of local water balance". Ecography. 42 (1): 1-11. 10.1111/ecog.03836.

DOI: https://doi.org/10.1111/ecog.03836

[6] G. I. Saucedo, R. Perucca, and D. Kurtz. (2023). "Las causas de los incendios de principios del año 2022 en la provincia de Corrientes". Ecología Austral. 33 (1): 273-284. 10.25260/ea.23.33.1.0.2020.

DOI: https://doi.org/10.25260/EA.23.33.1.0.2020

[7] T. A. Schroeder, M. A. Wulder, S. P. Healey, and G. G. Moisen. (2012). "Detecting post-fire salvage logging from Landsat change maps and national fire survey data". Remote Sensing of Environment. 122 : 166-174. 10.1016/j.rse.2011.10.031.

DOI: https://doi.org/10.1016/j.rse.2011.10.031

[8] S. Escuin, R. Navarro, and P. Fernández. (2007). "Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images". International Journal of Remote Sensing. 29 (4): 1053-1073. 10.1080/01431160701281072.

DOI: https://doi.org/10.1080/01431160701281072

[9] S. A. Bartalev, E. A. Lupyan, F. V. Stytsenko, O. Y. Panova, and V. Y. Efremov. (2014). "Express mapping of damage to Russian forests by fires using Landsat satellite data". Modern Problems of Remote Sensing of the Earth from Space. 11 (1): 9-20.

[10] Ж. В. Атутова. (2024). "Опыт применения геоинформационных данных в оценке постпирогенного восстановления растительного покрова". Вестник ВГУ. Серия: География. Геоэкология. (3): 4-13. 10.17308/geo/1609-0683/2024/3/4-13.

DOI: https://doi.org/10.17308/geo/1609-0683/2024/3/4-13

[11] О. С. Токарева, А. Д. А. Алшаиби, and О. А. Пасько. (2021). "Оценка Восстановительной Динамики Растительного Покрова Лесных Гарей С Использованием Данных Со Спутников Landsat". Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov. 332 (7): 191-199. 10.18799/24131830/2021/7/3283.

DOI: https://doi.org/10.18799/24131830/2021/7/3283

[12] F. T. Zahura, G. Bisht, Z. Li, S. McKnight, and X. Chen. (2024). "Impact of topography and climate on post-fire vegetation recovery across different burn severity and land cover types through random forest". Ecological Informatics. 8210.1016/j.ecoinf.2024.102757.

DOI: https://doi.org/10.1016/j.ecoinf.2024.102757

[13] J.-H. Ryu, K.-S. Han, S. Hong, N.-W. Park, Y.-W. Lee, and J. Cho. (2018). "Satellite-Based Evaluation of the Post-Fire Recovery Process from the Worst Forest Fire Case in South Korea". Remote Sensing. 10 (6). 10.3390/rs10060918.

DOI: https://doi.org/10.3390/rs10060918

[14] E. G. Shvetsov and E. I. Ponomarev. (2020). "Postfire Effects in Siberian Larch Stands on Multispectral Satellite Data". Contemporary Problems of Ecology. 13 (1): 104-112. 10.1134/s1995425520010096.

DOI: https://doi.org/10.1134/S1995425520010096

[15] P. G. Pugachev. (1994). "Pine forests of the Torgai depression". Kostanay Printing Yard, Kostanay.

[16] R. S. E. K. F. Enterprise. (2023). "Forest management project of KSU "Semiozerny Forestry Institution" of the Department of Natural Resources and Environmental Management of the Akimat of Kostanay region". 

[17] C. H. Key and N. C. Benson. (2006). "Landscape assessment: Ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio". FIREMON: Fire effects monitoring and inventory system.  

[18] E. S. Kasischke, M. R. Turetsky, R. D. Ottmar, N. H. F. French, E. E. Hoy, and E. S. Kane. (2008). "Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests". International Journal of Wildland Fire. 17 (4).  10.1071/wf08002.

DOI: https://doi.org/10.1071/WF08002

[19] A. T. Hudak, P. Morgan, M. J. Bobbitt, A. M. S. Smith, S. A. Lewis, L. B. Lentile, P. R. Robichaud, J. T. Clark, and R. A. McKinley. (2007). "The Relationship of Multispectral Satellite Imagery to Immediate Fire Effects". Fire Ecology. 3 (1): 64-90. 10.4996/fireecology.0301064.

DOI: https://doi.org/10.4996/fireecology.0301064

[20] C. J. Tucker. (1979). "Red and photographic infrared linear combinations for monitoring vegetation". Remote Sensing of Environment. 8 (2): 127-150. 10.1016/0034-4257(79)90013-0.

DOI: https://doi.org/10.1016/0034-4257(79)90013-0

[21] J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering. (1974). "Monitoring vegetation systems in the Great Plains with ERTS. In NASA Goddard Space Flight Center". Third Earth Resources Technology Satellite-1 Symposium. 309-317.

[22] G. H. Mitri and I. Z. Gitas. (2013). "Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery". International Journal of Applied Earth Observation and Geoinformation. 20 : 60-66. 10.1016/j.jag.2011.09.001.

DOI: https://doi.org/10.1016/j.jag.2011.09.001

[23] J. D. Miller and A. E. Thode. (2007). "Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)". Remote Sensing of Environment. 109 (1): 66-80. 10.1016/j.rse.2006.12.006.

DOI: https://doi.org/10.1016/j.rse.2006.12.006

[24] A. Viana-Soto, I. Aguado, and S. Martínez. (2017). "Assessment of Post-Fire Vegetation Recovery Using Fire Severity and Geographical Data in the Mediterranean Region (Spain)". Environments. 4 (4). 10.3390/environments4040090.

DOI: https://doi.org/10.3390/environments4040090

[25] F. V. Stytsenko, S. А. Bartalev, A. V. Bukas, D. V. Ershov, and I. A. Saigin. (2019). "The possibilities of prolonged burnt severity assessment of evergreen coniferous forest using multi-spectral satellite data". Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 16 (5): 217-227. 10.21046/2070-7401-2019-16-5-217-227.

DOI: https://doi.org/10.21046/2070-7401-2019-16-5-217-227

[26] B. Liu, S. R. Biswas, J. Yang, Z. Liu, H. S. He, Y. Liang, M. K. Lau, Y. Fang, and S. Han. (2020). "Strong influences of stand age and topography on post-fire understory recovery in a Chinese boreal forest". Forest Ecology and Management. 47310.1016/j.foreco.2020.118307.

DOI: https://doi.org/10.1016/j.foreco.2020.118307

[27] N. Stankova. (2023). "Post-Fire Recovery Monitoring Using Remote Sensing: A Review". Aerospace Research in Bulgaria. 35 : 192-200. 10.3897/arb.v35.e19.

DOI: https://doi.org/10.3897/arb.v35.e19

[28] C. Yıldız, R. Çömert, H. Tanyaş, A. Yılmaz, A. Akbaş, S. S. Akay, Ö. Yetemen, and T. Görüm. (2023). "The effect of post-wildfire management practices on vegetation recovery: Insights from the Sapadere fire, Antalya, Türkiye". Frontiers in Earth Science. 11. 10.3389/feart.2023.1174155.

DOI: https://doi.org/10.3389/feart.2023.1174155

[29] H. Lee, S. Kim, and J. Park. (2023). "Post-Fire Vegetation Recovery Assessment in Temperate Forests Using Time-Series MODIS Data and NDVI". Forest Ecology and Management. 512 : 120123.

[30] C. S. Stevens-Rumann and P. Morgan. (2019). "Tree regeneration following wildfires in the western US: a review". Fire Ecology. 15 (1). 10.1186/s42408-019-0032-1.

DOI: https://doi.org/10.1186/s42408-019-0032-1

[31] J. T. Abatzoglou and A. P. Williams. (2016). "Impact of anthropogenic climate change on wildfire across western US forests". Proceedings of the National Academy of Sciences. 113 (42): 11770-11775. 10.1073/pnas.1607171113.

DOI: https://doi.org/10.1073/pnas.1607171113

[32] L. V. Buryak and O. P. Kalenskaya. (2020). "The Impact of Wildfires on the Formation of Forest Stands in the Lower Angara Region". 

[33] M. E. Chambers, P. J. Fornwalt, S. L. Malone, and M. A. Battaglia. (2016). "Patterns of conifer regeneration following high severity wildfire in ponderosa pine – dominated forests of the Colorado Front Range". Forest Ecology and Management. 378 : 57-67. 10.1016/j.foreco.2016.07.001.

DOI: https://doi.org/10.1016/j.foreco.2016.07.001

[34] E. Chuvieco, L. Giglio, and C. Justice. (2008). "Global characterization of fire activity: toward defining fire regimes from Earth observation data". Global Change Biology. 14 (7): 1488-1502. 10.1111/j.1365-2486.2008.01585.x.

DOI: https://doi.org/10.1111/j.1365-2486.2008.01585.x

[35] J. Luoranen, J. Riikonen, and T. Saksa. (2022). "Factors affecting winter damage and recovery of newly planted Norway spruce seedlings in boreal forests". Forest Ecology and Management. 503. 10.1016/j.foreco.2021.119759.

DOI: https://doi.org/10.1016/j.foreco.2021.119759

[36] S. Dupire, T. Curt, S. Bigot, and T. Fréjaville. (2019). "Vulnerability of forest ecosystems to fire in the French Alps". European Journal of Forest Research. 138 (5): 813-830. 10.1007/s10342-019-01206-1.

DOI: https://doi.org/10.1007/s10342-019-01206-1

[37] N. S. Gamova, E. A. Faronova, Y. N. Korotkov, T. S. Koshovsky, and T. E. Yazrikova. (2023). "Early stages of pyrogenic succession in fir forests of the Southern Baikal Region (Baikal Reserve)". Ecosystems: Ecology and Dynamics. 7 (20): 113-136.

[38] C. S. Holling. (1973). "Resilience and Stability of Ecological Systems". Annual Review of Ecology and Systematics. 4 (1): 1-23. 10.1146/annurev.es.04.110173.000245.

DOI: https://doi.org/10.1146/annurev.es.04.110173.000245

[39] M. G. Turner, W. H. Romme, D. B. Tinker, and D. R. Foster. (2016). "The landscape ecology of fire". Annual Review of Ecology, Evolution, and Systematics. 47 : 1-19. 10.1146/annurev-ecolsys-121415-032141.

[40] S. Wang, X. Song, Q. Chen, X. Wang, M. Wei, Y. Ke, and Z. Luo. (2020). "Mechanical properties of cemented tailings backfill containing alkalized rice straw of various lengths". Journal of Environmental Management. 276 : 111124. 10.1016/j.jenvman.2020.111124.

DOI: https://doi.org/10.1016/j.jenvman.2020.111124

[41] D. Rodriguez-Cubillo, N. A. L. Pilon, and G. Durigan. (2021). "Tree height is more important than bark thickness, leaf habit or habitat preference to survive fire in the cerrado of south-east Brazil". International Journal of Wildland Fire. 30 (11): 899-910. 10.1071/wf21091.

DOI: https://doi.org/10.1071/WF21091

[42] L. G. Ramenskiy, I. A. Tsatsenkin, O. N. Chizhikov, and N. A. Antipov. (1994)." Ecological assessment of forage lands by vegetation cover". Selhozgiz, Moscow.

[43] А. Л. Гребенюк, Р. С. Великий, and А. Г. Матвеева. (2023). "Послепожарная Сукцессия В Хвойно-Широколиственных Лесах Национального Парка "Анюйский"". Сибирский лесной журнал. 6 : 85-97. 10.15372/sjfs20230609.

DOI: https://doi.org/10.15372/SJFS20230609

[44] M. Simiele, E. De Zio, A. Montagnoli, M. Terzaghi, D. Chiatante, G. S. Scippa, and D. Trupiano. (2022). "Biochar and/or Compost to Enhance Nursery-Produced Seedling Performance: A Potential Tool for Forest Restoration Programs". Forests. 13 (4).  10.3390/f13040550.

DOI: https://doi.org/10.3390/f13040550

[45] S. Zhumadina, J. Chlachula, A. Zhaglovskaya-Faurat, J. Czerniawska, G. Satybaldieva, N. Nurbayeva, N. Mapitov, A. Myrzagaliyeva, and E. Boribay. (2021). "Environmental Dynamics of the Ribbon-Like Pine Forests in the Parklands of North Kazakhstan". Forests. 13 (1). 10.3390/f13010002.

DOI: https://doi.org/10.3390/f13010002

[46] M. G. Turner, K. H. Braziunas, W. D. Hansen, and B. J. Harvey. (2019). "Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests". Proceedings of the National Academy of Sciences. 116 (23): 11319-11328. 10.1073/pnas.1902841116.

DOI: https://doi.org/10.1073/pnas.1902841116

[47] J. G. Pausas and J. E. Keeley. (2021). "Wildfires and global change". Frontiers in Ecology and the Environment. 19 (7): 387-395. 10.1002/fee.2359.

DOI: https://doi.org/10.1002/fee.2359

Downloads

Published

2025-05-30

How to Cite

[1]
Z. Ozgeldinova, A. Zhanguzhina, Z. Mukayev, Z. Berdenov, and M. Ulykpanova, “Assessment of the Dynamics and Condition of Post-Fire Forest Recovery in the Amankaragay Massif, Kostanay Region, Republic of Kazakhstan”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 2, pp. 713–733, May 2025.