The Effect of MgO Loads on Catalytic Activity of MgO/SiO2 in Coconut Oil Transesterification

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.257

Keywords:

MgO/SiO2, sol-gel, catalyst, biodiesel, transesterification

Abstract

This research aims to obtain biodiesel by transesterification of coconut oil with MgO/SiO2 as a catalyst, with the objective to examine the effect of MgO loads on the performance of the catalysts expressed in terms of oil conversion. The MgO/SiO2 composites with different mass ratios of 1:1, 1:2, 1:3, 1:5, and 1:10 were synthesized from Mg(NO3)·6H2O and SiO2 extracted from rice husk silica using sol-gel method and followed by calcination at 800 °C for 6 h. The produced catalysts were then tested in the transesterification of coconut oil to investigate the effect of catalyst composition, oil to methanol ratios, and reaction times. The experiments were carried out using a fixed catalyst load of 10% oil (w/v) and at 70 °C. The catalyst with the highest performance was then characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to confirm the formation of crystalline MgO/SiO2. The highest conversion of the transesterification product was analyzed using gas chromatography-mass spectrometry (GC-MS) technique to confirm the biodiesel production. The XRD diffractogram of the synthesized sample is characterized by the presence of sharp peaks confirming the existence of the sample as crystalline material attributed to the pyroxene-ideal (MgO3Si) phase. The existence of the sample as crystalline material is also supported by the absence of a broad diffraction peak attributed to amorphous rice husk silica, and SEM image of the sample which is characterized by the visible existence of crystalline structure in the forms of platelet prismatic, and tetrahedral shaped structures. The results demonstrated that the highest conversion (98%) was achieved with the use of MgO/SiO2 (1:5) as a catalyst, a ratio of oil to methanol of 1:6, and a reaction time of 4 h. The formation of methyl esters was confirmed by the results of GC-MS analysis.

References

[1] I. Paryanto, T. Prakoso, E. A. Suyono, and M. Gozan. (2019). "Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a Biodiesel–Petrodiesel fuel blend (BXX)". Fuel. 258. 10.1016/j.fuel.2019.116104.

DOI: https://doi.org/10.1016/j.fuel.2019.116104

[2] K. D. Pandiangan, H. Satria, Z. Sembiring, W. Simanjuntak, D. I. Alista, N. Bramanthio, and R. N. Putra. (2024). "High-Performance CaO/SiO2 Composite Prepared From Limestone And Pumice Silica As Catalyst For Rubber Seed Oil Transesterification". RASAYAN Journal of Chemistry. 17 (01): 14-20. 10.31788/rjc.2024.1718684.

DOI: https://doi.org/10.31788/RJC.2024.1718684

[3] N. E. Benti, A. B. Aneseyee, C. A. Geffe, T. A. Woldegiyorgis, G. S. Gurmesa, M. Bibiso, A. A. Asfaw, A. W. Milki, and Y. S. Mekonnen. (2023). "Biodiesel production in Ethiopia: Current status and future prospects". Scientific African. 1910.1016/j.sciaf.2022.e01531.

DOI: https://doi.org/10.1016/j.sciaf.2022.e01531

[4] Y. Zhang, Y. Zhong, S. Lu, Z. Zhang, and D. Tan. (2022). "A Comprehensive Review of the Properties, Performance, Combustion, and Emissions of the Diesel Engine Fueled with Different Generations of Biodiesel". Processes. 10 (6).  10.3390/pr10061178.

DOI: https://doi.org/10.3390/pr10061178

[5] K. D. Pandiangan, W. Simanjuntak, S. Hadi, I. Ilim, D. I. Alista, and D. A. Sinaga. (2023). "Study on the Reaction Parameters on Transesterification of Rubber Seed Oil Using MgO/zeolite-A Catalyst". Trends in Sciences. 20 (8). 10.48048/tis.2023.6480.

DOI: https://doi.org/10.48048/tis.2023.6480

[6] K. D. Pandiangan, W. Simanjuntak, S. Hadi, I. Ilim, and H. Amrulloh. (2021). "Physical characteristics and utilization of ZSM-5 prepared from rice husk silica and aluminum hydroxide as catalyst for transesterification of Ricinus communis oil". Materials Research Express. 8 (6). 10.1088/2053-1591/ac0365.

DOI: https://doi.org/10.1088/2053-1591/ac0365

[7] G. Baskar and R. Aiswarya. (2016). "Trends in catalytic production of biodiesel from various feedstocks". Renewable and Sustainable Energy Reviews. 57 : 496-504. 10.1016/j.rser.2015.12.101.

DOI: https://doi.org/10.1016/j.rser.2015.12.101

[8] N. Hasan, M. V. Ratnam, and F. Casciatori. (2022). "Biodiesel Production from Waste Animal Fat by Transesterification Using H2SO4 and KOH Catalysts: A Study of Physiochemical Properties". International Journal of Chemical Engineering. 2022 : 1-7. 10.1155/2022/6932320.

DOI: https://doi.org/10.1155/2022/6932320

[9] S. V. Thakur, S. M. Lawankar, A. S. Dange, and R. V. Thakur. (2018). "Optimization of Process of Biodiesel Produced via Acid Catalysts Using Sulfuric Acid, Hydrocloric Acid and Nitric Acid". Asian Journal of Convergence in Technology. 4 (1): 1-9.

[10] N. Puagsang, I. Chanakeawsomboon, S. Chantrapromma, and A. Palamanit. (2021). "Production of Biodiesel from Low-Grade Crude Palm Oil Using Hydrochloric Acid". EnvironmentAsia. 14 (1): 23-32. 10.14456/ea.2021.3.

[11] R. Chamola, M. F. Khan, A. Raj, M. Verma, and S. Jain. (2019). "Response surface methodology based optimization of in situ transesterification of dry algae with methanol, H2SO4 and NaOH". Fuel. 239 : 511-520. 10.1016/j.fuel.2018.11.038.

DOI: https://doi.org/10.1016/j.fuel.2018.11.038

[12] G. Perumal and D. K. Mahendradas. (2021). "Biodiesel production from Bauhinia variegata seeds oil using homogeneous catalyst". Petroleum Science and Technology. 40 (7): 857-870. 10.1080/10916466.2021.2008968.

DOI: https://doi.org/10.1080/10916466.2021.2008968

[13] K. D. Pandiangan, W. Simanjuntak, R. Supriyanto, I. Ilim, P. Prasetyo, and S. Hadi. (2020). "Production of Magnesium Oxides from Raw Salt Solution Using Electrochemical Precipitation Method as a Heterogeneous Catalyst for Transesterification of Coconut Oil". Revista de Chimie. 71 (8): 148-158. 10.37358/rc.20.8.8289.

DOI: https://doi.org/10.37358/RC.20.8.8289

[14] P. Mierczynski, M. Mosinska, L. Szkudlarek, K. Chalupka, M. Tatsuzawa, M. Al Maskari, W. Maniukiewicz, S. K. Wahono, K. Vasilev, and M. I. Szynkowska-Jozwik. (2020). "Biodiesel Production on Monometallic Pt, Pd, Ru, and Ag Catalysts Supported on Natural Zeolite". Materials (Basel). 14 (1). 10.3390/ma14010048.

DOI: https://doi.org/10.3390/ma14010048

[15] S. Elfina, K. D. Pandiangan, N. Jamarun, F. Subriadi, H. Hafnimardiyanti, and R. Roswita. (2023). "Transesterification of Palm Oil Catalyzed by CaO/SiO2 Prepared from Limestone and Rice Husk Silica". Journal of Multidisciplinary Applied Natural Science. 4 (1): 49-57. 10.47352/jmans.2774-3047.185.

DOI: https://doi.org/10.47352/jmans.2774-3047.185

[16] K. Sun, J. Lu, L. Ma, Y. Han, Z. Fu, and J. Ding. (2015). "A comparative study on the catalytic performance of different types of zeolites for biodiesel production". Fuel. 158 : 848-854. 10.1016/j.fuel.2015.06.048.

DOI: https://doi.org/10.1016/j.fuel.2015.06.048

[17] B. O. Yusuf, S. A. Oladepo, and S. A. Ganiyu. (2023). "Biodiesel Production from Waste Cooking Oil via beta-Zeolite-Supported Sulfated Metal Oxide Catalyst Systems". ACS Omega. 8 (26): 23720-23732. 10.1021/acsomega.3c01892.

DOI: https://doi.org/10.1021/acsomega.3c01892

[18] K. D. Pandiangan, K. Nisa, W. Simanjuntak, D. I. Alista, E. Noviana, and S. A. Hasan. (2023). "Application of Response Surface Methodology (RSM) to Study Transesterification of Palm Oil in the Presence of Zeolite-A as Catalyst". Journal of Multidisciplinary Applied Natural Science. 4 (1): 146-157. 10.47352/jmans.2774-3047.201.

DOI: https://doi.org/10.47352/jmans.2774-3047.201

[19] Z. Li, S. Ding, C. Chen, S. Qu, L. Du, J. Lu, and J. Ding. (2019). "Recyclable Li/NaY zeolite as a heterogeneous alkaline catalyst for biodiesel production: Process optimization and kinetics study". Energy Conversion and Management. 192 : 335-345. 10.1016/j.enconman.2019.04.053.

DOI: https://doi.org/10.1016/j.enconman.2019.04.053

[20] Z. T. Alismaeel, T. M. Al-Jadir, T. M. Albayati, A. S. Abbas, and A. M. Doyle. (2022). "Modification of FAU zeolite as an active heterogeneous catalyst for biodiesel production and theoretical considerations for kinetic modeling". Advanced Powder Technology. 33 (7). 10.1016/j.apt.2022.103646.

DOI: https://doi.org/10.1016/j.apt.2022.103646

[21] T. A. Degfie, T. T. Mamo, and Y. S. Mekonnen. (2019). "Optimized Biodiesel Production from Waste Cooking Oil (WCO) using Calcium Oxide (CaO) Nano-catalyst". Scientific Reports. 9 (1): 18982. 10.1038/s41598-019-55403-4.

DOI: https://doi.org/10.1038/s41598-019-55403-4

[22] K. D. Pandiangan, W. Simanjuntak, N. Jamarun, and S. Arief. (2021). "The use of MgO/SiO2 as catalyst for transesterification of rubber seed oil with different alcohols". Journal of Physics: Conference Series. 1751. 10.1088/1742-6596/1751/1/012100.

DOI: https://doi.org/10.1088/1742-6596/1751/1/012100

[23] S. H. Kamarullah, N. N. Ayunni, N. A. Kamilan, N. A. N. Abdullah, and S. N. M. Khazaai. (2023). "Production of Fatty Acid Methyl Ester from Waste Cooking Oil Utilizing Sulfonated TiO2-SiO2 Catalyst". GADING Journal of Science and Technology. 6 (2): 23-33.

[24] K. D. Pandiangan, W. Simanjuntak, I. Ilim, H. Satria, and N. Jamarun. (2019). "Catalytic Performance of CaO/SiO2 Prepared from Local Limestone Industry and Rice Husk Silica". The Journal of Pure and Applied Chemistry Research. 8 (2): 170-178. 10.21776/ub.jpacr.2019.008.02.459.

DOI: https://doi.org/10.21776/ub.jpacr.2019.008.02.459

[25] A. Buasri and V. Loryuenyong. (2018). "Continuous Production of Biodiesel from Rubber Seed Oil Using a Packed Bed Reactor with BaCl2 Impregnated CaO as Catalyst". Bulletin of Chemical Reaction Engineering & Catalysis. 13 (2): 320-330. 10.9767/bcrec.13.2.1585.320-330.

DOI: https://doi.org/10.9767/bcrec.13.2.1585.320-330

[26] S. T. Keera, S. M. El Sabagh, and A. R. Taman. (2018). "Castor oil biodiesel production and optimization". Egyptian Journal of Petroleum. 27 (4): 979-984. 10.1016/j.ejpe.2018.02.007.

DOI: https://doi.org/10.1016/j.ejpe.2018.02.007

[27] E. P. d. P. Azevedo, E. M. dos Santos Alves, J. R. B. de Souza, K. S. de Araújo, S. de Santana Khan, C. E. Alves de Mendonça, and M. I. S. Maciel. (2021). "Fatty acid in raw and heated coconut oil in eleven coconut oil food preparations analysed by gas chromatography". International Journal of Gastronomy and Food Science. 2410.1016/j.ijgfs.2021.100329.

DOI: https://doi.org/10.1016/j.ijgfs.2021.100329

[28] W. Simanjuntak, K. Delilawati Pandiangan, Z. Sembiring, and A. Simanjuntak. (2019). "Liquid Fuel Production by Zeolite-A Catalyzed Pyrolysis of Mixed Cassava Solid Waste and Rubber Seed Oil". Oriental Journal of Chemistry. 35 (1): 71-76. 10.13005/ojc/350108.

DOI: https://doi.org/10.13005/ojc/350108

[29] M. E. Llanos, T. Lopez, and R. Gomez. (1997). "Determination of the Surface Heterogeneity of MgO−SiO2 Sol−Gel Mixed Oxides by Means of CO2 and Ammonia Thermodesorption". Langmuir. 13 (5): 974-978. 10.1021/la950805y.

DOI: https://doi.org/10.1021/la950805y

Downloads

Published

2025-04-24

How to Cite

[1]
K. D. Pandiangan, W. Simanjuntak, I. Ilim, D. I. Alista, and E. Noviana, “The Effect of MgO Loads on Catalytic Activity of MgO/SiO2 in Coconut Oil Transesterification”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 2, pp. 446–455, Apr. 2025.

Funding data