Allyl-Modified of Calix[4]resorcinarene Derivatives for HER2 Inhibition Agents: An In Silico Study

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.250

Keywords:

allyl, blind docking, breast anticancer, calix[4]resorcinarene, calix[4]pyrogalloarene

Abstract

Breast cancer is one of the deathliest cancer diseases for women, with high mortality cases. Since breast cancer cells overexpressed HER2 receptors, a computerized structure-based screening was conducted to identify potential HER2 inhibitors as an anti-breast cancer agent. This method can investigate the potency of proposed compounds as potential protein inhibitors. Researchers were interested in studying some synthetic macromolecules, i.e., allyl-modified calix[4]resorcinarenes, through in silico studies as HER2 inhibitors using molecular docking studies. Prospective protein-ligand complexes for HER2 inhibition were further investigated by molecular dynamics simulations for 200 ns on different binding pockets. The allyloxycalix[4]resorcinarene derivative (5A) was identified as the most potential HER2 inhibitor through a computational approach, including molecular docking studies and molecular dynamics simulations. The HER2-5A complex was relatively stable during the 200 ns molecular dynamics run. In addition, the hydrogen bonds formed between blind docking and molecular dynamics simulations are almost unchanged for the HER2-5A complex. The HER2-5A formed with two crucial amino acid residues, i.e., Asp845 and Asn850. Moreover, the data of the molecular dynamics simulations of compounds 5A and 2A demonstrate the stability of both complexes in different binding sites of HER2. These computational results are preliminary data for further synthesis and in vitro evaluation.

References

[1] J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray. (2021). "Cancer statistics for the year 2020: An overview". International Journal of Cancer. 10.1002/ijc.33588.

DOI: https://doi.org/10.1002/ijc.33588

[2] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal. (2022). "Cancer statistics, 2022". CA: a Cancer Journal for Clinicians. 72 (1): 7-33. 10.3322/caac.21708.

DOI: https://doi.org/10.3322/caac.21708

[3] Y. S. Kurniawan, K. Gurning, I. Iksen, and A. Bikharudin. (2024). "Fight for Cancer Diseases using Natural Compounds and Their Semisynthetic Derivatives". Bioactivities. 10.47352/bioactivities.2963-654X.221.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.221

[4] M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, J. Vignat, J. R. Gralow, F. Cardoso, S. Siesling, and I. Soerjomataram. (2022). "Current and future burden of breast cancer: Global statistics for 2020 and 2040". Breast. 66 : 15-23. 10.1016/j.breast.2022.08.010.

DOI: https://doi.org/10.1016/j.breast.2022.08.010

[5] T. Fujii, R. Yajima, H. Tatsuki, K. Oosone, and H. Kuwano. (2016). "Anticancer effect of rapamycin on MCF-7 via downregulation of VEGF expression". In Vitro Cellular & Developmental Biology. 52 (1): 45-8. 10.1007/s11626-015-9944-5.

DOI: https://doi.org/10.1007/s11626-015-9944-5

[6] R. Acharya, S. Chacko, P. Bose, A. Lapenna, and S. P. Pattanayak. (2019). "Structure Based Multitargeted Molecular Docking Analysis of Selected Furanocoumarins against Breast Cancer". Scientific Reports. 9 (1). 10.1038/s41598-019-52162-0.

DOI: https://doi.org/10.1038/s41598-019-52162-0

[7] S. A. Elseginy, R. Hamdy, V. Menon, A. M. Almehdi, R. El-Awady, and S. S. M. Soliman. (2020). "Design, synthesis, and computational validation of novel compounds selectively targeting HER2-expressing breast cancer". Bioorganic & Medicinal Chemistry Letters. 30 (24): 127658. 10.1016/j.bmcl.2020.127658.

DOI: https://doi.org/10.1016/j.bmcl.2020.127658

[8] M. R. Hasan, A. A. Alsaiari, B. Z. Fakhurji, M. H. R. Molla, A. H. Asseri, M. A. A. Sumon, M. N. Park, F. Ahammad, and B. Kim. (2022). "Application of Mathematical Modeling and Computational Tools in the Modern Drug Design and Development Process". Molecules. 27 (13). 10.3390/molecules27134169.

DOI: https://doi.org/10.3390/molecules27134169

[9] M. Z. Nawaz, S. A. Attique, Q. U. Ain, H. A. Alghamdi, M. Bilal, W. Yan, and D. Zhu. (2022). "Discovery and characterization of dual inhibitors of human Vanin-1 and Vanin-2 enzymes through molecular docking and dynamic simulation-based approach". International Journal of Biological Macromolecules. 213 : 1088-1097. 10.1016/j.ijbiomac.2022.06.014.

DOI: https://doi.org/10.1016/j.ijbiomac.2022.06.014

[10] Y. S. Kurniawan, N. Fatmasari, J. Jumina, H. D. Pranowo, and E. N. Sholikhah. (2023). "Evaluation of The Anticancer Activity of Hydroxyxanthones Against Human Liver Carcinoma Cell Line". Journal of Multidisciplinary Applied Natural Science. 4 (1): 1-15. 10.47352/jmans.2774-3047.165.

DOI: https://doi.org/10.47352/jmans.2774-3047.165

[11] X. Xia, C. Gong, Y. Zhang, and H. Xiong. (2023). "The History and Development of HER2 Inhibitors". Pharmaceuticals (Basel). 16 (10). 10.3390/ph16101450.

DOI: https://doi.org/10.3390/ph16101450

[12] N. Iqbal and N. Iqbal. (2014). "Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications". Molecular Biology International. 2014 852748. 10.1155/2014/852748.

DOI: https://doi.org/10.1155/2014/852748

[13] K. Aertgeerts, R. Skene, J. Yano, B. C. Sang, H. Zou, G. Snell, A. Jennings, K. Iwamoto, N. Habuka, A. Hirokawa, T. Ishikawa, T. Tanaka, H. Miki, Y. Ohta, and S. Sogabe. (2011). "Structural analysis of the mechanism of inhibition and allosteric activation of the kinase domain of HER2 protein". Journal of Biological Chemistry. 286 (21): 18756-65. 10.1074/jbc.M110.206193.

DOI: https://doi.org/10.1074/jbc.M110.206193

[14] S. Meng, D. Tripathy, S. Shete, R. Ashfaq, B. Haley, S. Perkins, P. Beitsch, A. Khan, D. Euhus, C. Osborne, E. Frenkel, S. Hoover, M. Leitch, E. Clifford, E. Vitetta, L. Morrison, D. Herlyn, L. W. Terstappen, T. Fleming, T. Fehm, T. Tucker, N. Lane, J. Wang, and J. Uhr. (2004). "HER-2 gene amplification can be acquired as breast cancer progresses". Proceedings of the National Academy of Sciences (PNAS). 101 (25): 9393-8. 10.1073/pnas.0402993101.

DOI: https://doi.org/10.1073/pnas.0402993101

[15] S. S. Sohrab and M. A. Kamal. (2022). "Screening, Docking, and Molecular Dynamics Study of Natural Compounds as an Anti-HER2 for the Management of Breast Cancer". Life (Basel). 12 (11). 10.3390/life12111729.

DOI: https://doi.org/10.3390/life12111729

[16] J. Fan, A. Fu, and L. Zhang. (2019). "Progress in molecular docking". Quantitative Biology. 7 (2): 83-89. 10.1007/s40484-019-0172-y.

DOI: https://doi.org/10.1007/s40484-019-0172-y

[17] Y. S. Kurniawan, E. Yudha, G. Nugraha, N. Fatmasari, H. D. Pranowo, J. Jumina, and E. N. Sholikhah. (2024). "Molecular Docking and Molecular Dynamic Investigations of Xanthone-Chalcone Derivatives against Epidermal Growth Factor Receptor for Preliminary Discovery of Novel Anticancer Agent". Indonesian Journal of Chemistry. 24 (1). 10.22146/ijc.88449.

DOI: https://doi.org/10.22146/ijc.88449

[18] F. Nasuhi Pur and K. A. Dilmaghani. (2014). "Calixplatin: novel potential anticancer agent based on the platinum complex with functionalized calixarene". Journal of Coordination Chemistry. 67 (3): 440-448. 10.1080/00958972.2014.890718.

DOI: https://doi.org/10.1080/00958972.2014.890718

[19] M. Oguz, A. Gul, S. Karakurt, and M. Yilmaz. (2020). "Synthesis and evaluation of the antitumor activity of Calix[4]arene l-proline derivatives". Bioorganic Chemistry. 94 : 103207. 10.1016/j.bioorg.2019.103207.

DOI: https://doi.org/10.1016/j.bioorg.2019.103207

[20] L. An, C. Wang, L. Han, J. Liu, T. Huang, Y. Zheng, C. Yan, and J. Sun. (2019). "Structural Design, Synthesis, and Preliminary Biological Evaluation of Novel Dihomooxacalix[4]arene-Based Anti-tumor Agents". Frontiers in Chemistry. 7 : 856. 10.3389/fchem.2019.00856.

DOI: https://doi.org/10.3389/fchem.2019.00856

[21] L. An, C. Wang, Y. G. Zheng, J. D. Liu, and T. H. Huang. (2021). "Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities". European Journal of Medicinal Chemistry. 210 : 112984. 10.1016/j.ejmech.2020.112984.

DOI: https://doi.org/10.1016/j.ejmech.2020.112984

[22] M. Oguz. (2022). "Synthesis and anticancer activity of new p-tertbutylcalix[4]arenes integrated with trifluoromethyl aniline groups against several cell lines". Tetrahedron. 116. 10.1016/j.tet.2022.132816.

DOI: https://doi.org/10.1016/j.tet.2022.132816

[23] A. Oguz, B. N. Saglik, M. Oguz, B. Ozturk, and M. Yilmaz. (2024). "Novel mitochondrial and DNA damaging fluorescent Calix[4]arenes bearing isatin groups as aromatase inhibitors: Design, synthesis and anticancer activity". Bioorganic & Medicinal Chemistry. 98 : 117586. 10.1016/j.bmc.2023.117586.

DOI: https://doi.org/10.1016/j.bmc.2023.117586

[24] B. I. G. M. Ngurah, J. Jumina, C. Anwar, S. Sunardi, and M. Mustofa. (2017). "Synthesis and <i>In Vitro</i> Evaluation of C-methylcalix[4]resorcinaryl octacinnamate and C-methylcalix[4]resorcinaryl octabenzoate as the Sunscreen". Indonesian Journal of Chemistry. 17 (1). 10.22146/ijc.23575.

DOI: https://doi.org/10.22146/ijc.23575

[25] J. Jumina, D. Siswanta, A. K. Zulkarnain, S. Triono, P. Priatmoko, E. Yuanita, N. Fatmasari, and I. Nursalim. (2019). "Development of C-Arylcalix[4]resorcinarenes and C-Arylcalix[4]pyrogallolarenes as Antioxidant and UV-B Protector". Indonesian Journal of Chemistry. 19 (2). 10.22146/ijc.26868.

DOI: https://doi.org/10.22146/ijc.26868

[26] K. Sathiyaseelan, A. Antony Muthu Prabhu, and N. Rajendiran. (2024). "Photophysical, Antioxidant, Antibacterial and NBO, LOL, ELF Analysis of Alkyl Groups Substituted Calix[4]resorcinarenes". Journal of Fluorescence. 34 (2): 885-903. 10.1007/s10895-023-03280-6.

DOI: https://doi.org/10.1007/s10895-023-03280-6

[27] R. R. Putri, H. D. Pranowo, Y. S. Kurniawan, H. A. Fatimi, and J. Jumina. (2023). "Synthesis of Calix[4]resorcinarene Derivatives as Antimalarial Agents through Heme Polymerization Inhibition Assay". Indonesian Journal of Chemistry. 23 (4). 10.22146/ijc.81452.

DOI: https://doi.org/10.22146/ijc.81452

[28] A. D. Becke. (1993). "Density-functional thermochemistry. III. The role of exact exchange". The Journal of Chemical Physics. 98 (7): 5648-5652. 10.1063/1.464913.

DOI: https://doi.org/10.1063/1.464913

[29] C. Lee, W. Yang, and R. G. Parr. (1988). "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density". Physical Review B: Condensed Matter. 37 (2): 785-789. 10.1103/physrevb.37.785.

DOI: https://doi.org/10.1103/PhysRevB.37.785

[30] A. Suwattanamala, A. L. Magalhães, and J. A. N. F. Gomes. (2005). "Computational study of calix[4]arene derivatives and complexation with Zn2+". Chemical Physics. 310 (1-3): 109-122. 10.1016/j.chemphys.2004.10.029.

DOI: https://doi.org/10.1016/j.chemphys.2004.10.029

[31] VeraI. Maslennikova, OlgaS. Serkova, M. Gruner, S. Goutal, I. Bauer, WolfD. Habicher, KonstantinA. Lyssenko, MikhailY. Antipin, and EduardE. Nifantyev. (2004). "Synthesis and Conformation Analysis of New Perphosphorylated Calix[4]resorcinarenes". European Journal of Organic Chemistry. 2004 (23): 4884-4893. 10.1002/ejoc.200400363.

DOI: https://doi.org/10.1002/ejoc.200400363

[32] A. Velásquez-Silva, B. Cortés, Z. J. Rivera-Monroy, A. Pérez-Redondo, and M. Maldonado. (2017). "Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene". Journal of Molecular Structure. 1137 : 380-386. 10.1016/j.molstruc.2017.02.059.

DOI: https://doi.org/10.1016/j.molstruc.2017.02.059

[33] P. Shree, P. Mishra, C. Selvaraj, S. K. Singh, R. Chaube, N. Garg, and Y. B. Tripathi. (2022). "Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study". Journal of Biomolecular Structure and Dynamics. 40 (1): 190-203. 10.1080/07391102.2020.1810778.

DOI: https://doi.org/10.1080/07391102.2020.1810778

[34] X. Y. Meng, H. X. Zhang, M. Mezei, and M. Cui. (2011). "Molecular docking: a powerful approach for structure-based drug discovery". Current Computer-Aided Drug Design. 7 (2): 146-57. 10.2174/157340911795677602.

DOI: https://doi.org/10.2174/157340911795677602

[35] M. R. Yadav, P. R. Murumkar, R. Yadav, and K. Joshi. (2023). In: "Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development". 69-88. 10.1016/b978-0-443-18638-7.00006-2.

DOI: https://doi.org/10.1016/B978-0-443-18638-7.00006-2

[36] G. Grasso, A. Di Gregorio, B. Mavkov, D. Piga, G. F. D. Labate, A. Danani, and M. A. Deriu. (2022). "Fragmented blind docking: a novel protein-ligand binding prediction protocol". Journal of Biomolecular Structure and Dynamics. 40 (24): 13472-13481. 10.1080/07391102.2021.1988709.

DOI: https://doi.org/10.1080/07391102.2021.1988709

[37] N. Fayyazi, A. Fassihi, S. Esmaeili, S. Taheri, J. B. Ghasemi, and L. Saghaie. (2020). "Molecular dynamics simulation and 3D-pharmacophore analysis of new quinoline-based analogues with dual potential against EGFR and VEGFR-2". International Journal of Biological Macromolecules. 142 : 94-113. 10.1016/j.ijbiomac.2019.09.077.

DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.077

[38] F. F. Wulan, T. D. Wahyuningsih, E. Astuti, and N. Prasetyo. (2024). "Towards targeting EGFR and COX-2 inhibitors: comprehensive computational studies on the role of chlorine group in novel thienyl-pyrazoline derivative". Journal of Biomolecular Structure and Dynamics. 42 (19): 9857-9872. 10.1080/07391102.2023.2252915.

DOI: https://doi.org/10.1080/07391102.2023.2252915

[39] M. Surti, M. Patel, M. Adnan, A. Moin, S. A. Ashraf, A. J. Siddiqui, M. Snoussi, S. Deshpande, and M. N. Reddy. (2020). "Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: designing, docking and molecular dynamics simulation study". RSC Advances. 10 (62): 37707-37720. 10.1039/d0ra06379g.

DOI: https://doi.org/10.1039/D0RA06379G

[40] N. Homeyer and H. Gohlke. (2012). "Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method". Molecular Informatics. 31 (2): 114-22. 10.1002/minf.201100135.

DOI: https://doi.org/10.1002/minf.201100135

Downloads

Published

2025-02-22

How to Cite

[1]
A. Fitria, Y. S. Kurniawan, A. D. Ananto, J. Jumina, E. N. Sholikhah, and H. D. Pranowo, “Allyl-Modified of Calix[4]resorcinarene Derivatives for HER2 Inhibition Agents: An In Silico Study”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 2, pp. 352–369, Feb. 2025.

Funding data