Uncovering The Pharmacological Mechanism of Ficus elastica as Anti-hyperlipidemia Candidate: LC-HRMS, Network Pharmacology, In vitro and In vivo Studies
DOI:
https://doi.org/10.47352/jmans.2774-3047.249Keywords:
Ficus elastica, anti-hyperlipidemic, network pharmacology, HMG-CoA reductase, in vivo lipid-lowering, LC-HRMSAbstract
Hyperlipidemia is a major risk factor for cardiovascular diseases. While conventional treatments exist, there is a growing interest in natural remedies with fewer side effects. Ficus elastica has promising medicinal properties, yet its potential as an anti-hyperlipidemic agent remains unexplored. This study aimed to investigate the anti-hyperlipidemic effects of F. elastica using an integrated approach of LC-HRMS-based chemical bioinformatics and in vitro/in vivo experimental validation. The anti-hyperlipidemic potential of F. elastica and its mechanism of action were screened using integrative computational network pharmacology followed by in vitro HMG-CoA reductase inhibition and in vivo lipid-lowering activity in a hyperlipidemia rat model. Network pharmacology analysis identified STAT3, HSP90AA1, and TLR4 as potential core targets involved in lipid and atherosclerosis-related KEGG pathways. Molecular docking simulations revealed high-affinity interactions between F. elastica compounds and the identified targets, notably compound 41 and compound 61. In vitro assay demonstrated that ethanolic extract of F. elastica inhibited HMG-CoA reductase with an IC50 of 297.73 µg/mL. In vivo experiment using a hyperlipidemic rat model showed significant reductions in total cholesterol, triglycerides, and increased HDL levels. The reduction of triglycerides and elevation of HDL level after F. elastica ethanolic extract supplementation is similar to the effect from supplementation of simvastatin. These findings suggest that F. elastica ethanolic extract possesses notable anti-hyperlipidemic properties, likely mediated through multiple molecular targets and pathways. The study highlights the potential of F. elastica ethanolic extract as a promising candidate for anti-hyperlipidemic therapy and underscores the efficacy of integrating computational and experimental approaches in natural product research.
References
[1] M. Hedayatnia, Z. Asadi, R. Zare-Feyzabadi, M. Yaghooti-Khorasani, H. Ghazizadeh, R. Ghaffarian-Zirak, A. Nosrati-Tirkani, M. Mohammadi-Bajgiran, M. Rohban, F. Sadabadi, H. R. Rahimi, M. Ghalandari, M. S. Ghaffari, A. Yousefi, E. Pouresmaeili, M. R. Besharatlou, M. Moohebati, G. A. Ferns, H. Esmaily, and M. Ghayour-Mobarhan. (2020). "Dyslipidemia and cardiovascular disease risk among the MASHAD study population". Lipids in Health and Disease. 19 (1): 42. 10.1186/s12944-020-01204-y.
DOI: https://doi.org/10.1186/s12944-020-01204-y[2] M. Vaduganathan, G. A. Mensah, J. V. Turco, V. Fuster, and G. A. Roth. (2022). "The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health". Journal of the American College of Cardiology. 80 (25): 2361-2371. 10.1016/j.jacc.2022.11.005.
DOI: https://doi.org/10.1016/j.jacc.2022.11.005[3] S. S. Gidding and N. B. Allen. (2019). "Cholesterol and Atherosclerotic Cardiovascular Disease: A Lifelong Problem". Journal of the American Heart Association. 8 (11): e012924. 10.1161/JAHA.119.012924.
DOI: https://doi.org/10.1161/JAHA.119.012924[4] M. R. Bonfim, A. S. Oliveira, S. L. do Amaral, and H. L. Monteiro. (2015). "Treatment of dyslipidemia with statins and physical exercises: recent findings of skeletal muscle responses". Arquivos Brasileiros de Cardiologia. 104 (4): 324-31. 10.5935/abc.20150005.
DOI: https://doi.org/10.5935/abc.20150005[5] M. Schachter. (2005). "Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update". Fundamental and Clinical Pharmacology. 19 (1): 117-25. 10.1111/j.1472-8206.2004.00299.x.
DOI: https://doi.org/10.1111/j.1472-8206.2004.00299.x[6] E. S. Istvan and J. Deisenhofer. (2001). "Structural mechanism for statin inhibition of HMG-CoA reductase". Science. 292 (5519): 1160-4. 10.1126/science.1059344.
DOI: https://doi.org/10.1126/science.1059344[7] P. P. Toth and M. Banach. (2019). "Statins: Then and Now". Methodist DeBakey Cardiovascular Journal. 15 (1): 23-31. 10.14797/mdcj-15-1-23.
DOI: https://doi.org/10.14797/mdcj-15-1-23[8] N. C. Ward, G. F. Watts, and R. H. Eckel. (2019). "Statin Toxicity". Circulation Research. 124 (2): 328-350. 10.1161/CIRCRESAHA.118.312782.
DOI: https://doi.org/10.1161/CIRCRESAHA.118.312782[9] J. I. Vargas, M. Arrese, V. H. Shah, and J. P. Arab. (2017). "Use of Statins in Patients with Chronic Liver Disease and Cirrhosis: Current Views and Prospects". Current Gastroenterology Reports. 19 (9): 43. 10.1007/s11894-017-0584-7.
DOI: https://doi.org/10.1007/s11894-017-0584-7[10] R. J. Edison and M. Muenke. (2004). "Central nervous system and limb anomalies in case reports of first-trimester statin exposure". The New England Journal of Medicine. 350 (15): 1579-82. 10.1056/NEJM200404083501524.
DOI: https://doi.org/10.1056/NEJM200404083501524[11] A. S. Arsyad, A. Nurrochmad, and N. Fakhrudin. (2022). "Phytochemistry, traditional uses, and pharmacological activities of Ficus elastica Roxb. ex Hornem: A review". Journal of Herbmed Pharmacology. 12 (1): 41-53. 10.34172/jhp.2023.04.
DOI: https://doi.org/10.34172/jhp.2023.04[12] D. M. Teixeira, V. C. Canelas, A. M. do Canto, J. M. G. Teixeira, and C. B. Dias. (2009). "HPLC-DAD Quantification of Phenolic Compounds Contributing to the Antioxidant Activity ofMaclura pomifera, Ficus caricaandFicus elasticaExtracts". Analytical Letters. 42 (18): 2986-3003. 10.1080/00032710903276646.
DOI: https://doi.org/10.1080/00032710903276646[13] F. Ludwig, W. Middleton, F. Gallenmuller, P. Rogers, and T. Speck. (2019). "Living bridges using aerial roots of ficus elastica - an interdisciplinary perspective". Scientific Reports. 9 (1): 12226. 10.1038/s41598-019-48652-w.
DOI: https://doi.org/10.1038/s41598-019-48652-w[14] C. N. Ginting, I. N. E. Lister, E. Girsang, D. Riastawati, H. S. W. Kusuma, and W. Widowati. (2020). "Antioxidant Activities of Ficus elastica Leaves Ethanol Extract and Its Compounds". Molecular and Cellular Biomedical Sciences. 4 (1). 10.21705/mcbs.v4i1.86.
DOI: https://doi.org/10.21705/mcbs.v4i1.86[15] P. V. Kiem, C. V. Minh, N. X. Nhiem, B. H. Tai, T. H. Quang, H. L. T. Anh, N. X. Cuong, T. N. Hai, S.-H. Kim, J.-K. Kim, H.-D. Jang, and Y.-H. Kim. (2012). "Chemical Constituents of the Ficus elastica Leaves and Their Antioxidant Activities". Bulletin of the Korean Chemical Society. 33 (10): 3461-3464. 10.5012/bkcs.2012.33.10.3461.
DOI: https://doi.org/10.5012/bkcs.2012.33.10.3461[16] S. A. P. Putri, A. R. G. Maharani, D. Luthfiana, L. C. Nweze, A. Setiawansyah, G. Susanti, and H. Doloking. (2024). "Integrating The Network Pharmacology and Molecular Docking to Uncover The Potential Mechanism Of Rutin In Fighting Diabetes Mellitus". Ad-Dawaa' Journal of Pharmaceutical Sciences. 39-52. 10.24252/djps.v7i1.49701.
DOI: https://doi.org/10.24252/djps.v7i1.49701[17] S. Susianti, S. Bahri, S. Hadi, A. Setiawansyah, L. Rachmadi, I. Fadilah, and M. G. Ratna. (2024). "Integrating The Network Pharmacology and Molecular Docking Confirmed with In Vitro Toxicity to Reveal Potential Mechanism of Non–Polar Fraction of Cyperus rotundus Linn as Anti-Cancer Candidate". Journal of Multidisciplinary Applied Natural Science. 5 (1): 56-73. 10.47352/jmans.2774-3047.228.
DOI: https://doi.org/10.47352/jmans.2774-3047.228[18] L. Ory, E. H. Nazih, S. Daoud, J. Mocquard, M. Bourjot, L. Margueritte, M. A. Delsuc, J. M. Bard, Y. F. Pouchus, S. Bertrand, and C. Roullier. (2019). "Targeting bioactive compounds in natural extracts - Development of a comprehensive workflow combining chemical and biological data". Analytica Chimica Acta. 1070 : 29-42. 10.1016/j.aca.2019.04.038.
DOI: https://doi.org/10.1016/j.aca.2019.04.038[19] K. L. Kurita, E. Glassey, and R. G. Linington. (2015). "Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries". Proceedings of the National Academy of Sciences (PNAS). 112 (39): 11999-2004. 10.1073/pnas.1507743112.
DOI: https://doi.org/10.1073/pnas.1507743112[20] B. U. Jaki, S. G. Franzblau, L. R. Chadwick, D. C. Lankin, F. Zhang, Y. Wang, and G. F. Pauli. (2008). "Purity-activity relationships of natural products: the case of anti-TB active ursolic acid". Journal of Natural Products. 71 (10): 1742-8. 10.1021/np800329j.
DOI: https://doi.org/10.1021/np800329j[21] L. K. Caesar and N. B. Cech. (2019). "Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2". Natural Product Reports. 36 (6): 869-888. 10.1039/c9np00011a.
DOI: https://doi.org/10.1039/C9NP00011A[22] X. Ji, S. Shi, B. Liu, M. Shan, D. Tang, W. Zhang, Y. Zhang, L. Zhang, H. Zhang, C. Lu, and Y. Wang. (2019). "Bioactive compounds from herbal medicines to manage dyslipidemia". Biomedicine and Pharmacotherapy. 118 : 109338. 10.1016/j.biopha.2019.109338.
DOI: https://doi.org/10.1016/j.biopha.2019.109338[23] A. F. G. Cicero, A. Colletti, G. Bajraktari, O. Descamps, D. M. Djuric, M. Ezhov, Z. Fras, N. Katsiki, M. Langlois, G. Latkovskis, D. B. Panagiotakos, G. Paragh, D. P. Mikhailidis, O. Mitchenko, B. Paulweber, D. Pella, C. Pitsavos, Z. Reiner, K. K. Ray, M. Rizzo, A. Sahebkar, M. C. Serban, L. S. Sperling, P. P. Toth, D. Vinereanu, M. Vrablik, N. D. Wong, and M. Banach. (2017). "Lipid lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel". Archives of Medical Science. 13 (5): 965-1005. 10.5114/aoms.2017.69326.
DOI: https://doi.org/10.5114/aoms.2017.69326[24] P. P. Toth, S. Fazio, N. D. Wong, M. Hull, and G. A. Nichols. (2020). "Risk of cardiovascular events in patients with hypertriglyceridaemia: A review of real-world evidence". Diabetes, Obesity and Metabolism. 22 (3): 279-289. 10.1111/dom.13921.
DOI: https://doi.org/10.1111/dom.13921[25] H. Dong, Y. Zhao, L. Zhao, and F. Lu. (2013). "The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials". Planta Medica. 79 (6): 437-46. 10.1055/s-0032-1328321.
DOI: https://doi.org/10.1055/s-0032-1328321[26] Y. Chen, W. Lu, Z. Jin, J. Yu, and B. Shi. (2019). "Carbenoxolone ameliorates hepatic lipid metabolism and inflammation in obese mice induced by high fat diet via regulating the JAK2/STAT3 signaling pathway". International Immunopharmacology. 74 : 105498. 10.1016/j.intimp.2019.03.011.
DOI: https://doi.org/10.1016/j.intimp.2019.03.011[27] Z. Tuzcu, C. Orhan, N. Sahin, V. Juturu, and K. Sahin. (2017). "Cinnamon Polyphenol Extract Inhibits Hyperlipidemia and Inflammation by Modulation of Transcription Factors in High-Fat Diet-Fed Rats". Oxidative Medicine and Cellular Longevity. 2017 : 1583098. 10.1155/2017/1583098.
DOI: https://doi.org/10.1155/2017/1583098[28] J. Sun, Z. Wang, L. Chen, and G. Sun. (2021). "Hypolipidemic Effects and Preliminary Mechanism of Chrysanthemum Flavonoids, Its Main Components Luteolin and Luteoloside in Hyperlipidemia Rats". Antioxidants (Basel). 10 (8). 10.3390/antiox10081309.
DOI: https://doi.org/10.3390/antiox10081309[29] F. N. Alsoodeeri, H. M. Alqabbani, and N. M. Aldossari. (2020). "Effects of Cinnamon (Cinnamomum cassia) Consumption on Serum Lipid Profiles in Albino Rats". Journal of Lipids. 2020 : 8469830. 10.1155/2020/8469830.
DOI: https://doi.org/10.1155/2020/8469830[30] Y. Huang, R. Tocmo, M. C. Nauman, M. A. Haughan, and J. J. Johnson. (2021). "Defining the Cholesterol Lowering Mechanism of Bergamot (Citrus bergamia) Extract in HepG2 and Caco-2 Cells". Nutrients. 13 (9). 10.3390/nu13093156.
DOI: https://doi.org/10.3390/nu13093156[31] M. Ono and K. Fujimori. (2011). "Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells". Journal of Agricultural and Food Chemistry. 59 (24): 13346-52. 10.1021/jf203490a.
DOI: https://doi.org/10.1021/jf203490a[32] T. Su, C. Huang, C. Yang, T. Jiang, J. Su, M. Chen, S. Fatima, R. Gong, X. Hu, Z. Bian, Z. Liu, and H. Y. Kwan. (2020). "Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity". Pharmacological Research. 152 : 104586. 10.1016/j.phrs.2019.104586.
DOI: https://doi.org/10.1016/j.phrs.2019.104586[33] E. Raschi, M. Casula, A. F. G. Cicero, A. Corsini, C. Borghi, and A. Catapano. (2023). "Beyond statins: New pharmacological targets to decrease LDL-cholesterol and cardiovascular events". Pharmacology and Therapeutics. 250 : 108507. 10.1016/j.pharmthera.2023.108507.
DOI: https://doi.org/10.1016/j.pharmthera.2023.108507[34] P. P. Toth, P. K. Shah, and N. E. Lepor. (2020). "Targeting hypertriglyceridemia to mitigate cardiovascular risk: A review". American Journal of Preventive Cardiology. 3 : 100086. 10.1016/j.ajpc.2020.100086.
DOI: https://doi.org/10.1016/j.ajpc.2020.100086[35] K. Mahdy Ali, A. Wonnerth, K. Huber, and J. Wojta. (2012). "Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities". British Journal of Pharmacology. 167 (6): 1177-94. 10.1111/j.1476-5381.2012.02081.x.
DOI: https://doi.org/10.1111/j.1476-5381.2012.02081.x[36] K. J. Bubb, A. J. Nelson, and S. J. Nicholls. (2022). "Targeting triglycerides to lower residual cardiovascular risk". Expert Review of Cardiovascular Therapy. 20 (3): 185-191. 10.1080/14779072.2022.2058489.
DOI: https://doi.org/10.1080/14779072.2022.2058489[37] A. L. Catapano, M. Farnier, J. M. Foody, P. P. Toth, J. E. Tomassini, P. Brudi, and A. M. Tershakovec. (2014). "Combination therapy in dyslipidemia: where are we now?". Atherosclerosis. 237 (1): 319-35. 10.1016/j.atherosclerosis.2014.09.026.
DOI: https://doi.org/10.1016/j.atherosclerosis.2014.09.026[38] Z. Reiner. (2010). "Combined therapy in the treatment of dyslipidemia". Fundamental and Clinical Pharmacology. 24 (1): 19-28. 10.1111/j.1472-8206.2009.00764.x.
DOI: https://doi.org/10.1111/j.1472-8206.2009.00764.x[39] I. H. Ifijen, I. J. Odiachi, M. Maliki, O. N. Aghedo, and C. O. Okereke. (2020). "Investigation of the Anti-malaria Potency and Chemical Constituents of the Bark Extracts of Ficus elastica in Plasmodium berghei Infected Mice". Chemistry Africa. 3 (4): 1045-1051. 10.1007/s42250-020-00163-2.
DOI: https://doi.org/10.1007/s42250-020-00163-2[40] J. E. Mbosso Teinkela, G. W. Tchepnou, C. Ngo Nyobe, Y. Fouokeng, E. Mpondo Mpondo, and J. C. Assob Nguedia. (2023). "Antiproliferative, antimicrobial, antiplasmodial, and oral acute toxicity of Ficus elastica Roxb. Ex Hornem lianas". Investigational Medicinal Chemistry and Pharmacology. 6 (1): 1-8. 10.31183/imcp.2023.00077.
DOI: https://doi.org/10.31183/imcp.2023.00077[41] J. E. M. Teinkela, J. B. H. Fokou, J. C. K. Sado, A. N. Mbouombouo, P. B. E. Kedi, and J. C. N. Nyobe. (2023). "Phytochemical analysis, assessment of acute and subacute toxicological profile of the ethanolic extract of Ficus elastica Roxb. Ex Hornem (Moraceae) lianas in experimental Wistar rats". International Journal of Herbal Medicine. 11 (5): 115-125. 10.22271/flora.2023.v11.i5b.895.
DOI: https://doi.org/10.22271/flora.2023.v11.i5b.895[42] P. A. Millones-Gomez, M. A. De la Garza-Ramos, V. H. Urrutia-Baca, H. C. Hernandez-Martinez, D. A. Hernandez Marin, and C. A. Minchon Medina. (2022). "Cytotoxicity of Peruvian propolis and Psidium guajava on human gingival fibroblasts, PBMCs and HeLa cells". F1000Research. 11 : 430. 10.12688/f1000research.110352.2.
DOI: https://doi.org/10.12688/f1000research.110352.1[43] S. S. El-Hawary, G. M. Wassel, B. S. El-Menshawy, N. A. Ibrahim, K. Mahmoud, and M. M. Ayoub. (2012). "Antitumor and Antioxidant Activity of Ficus Elastica Roxb. and Ficus Bengalensis Linn". Family Moraceae. 19 : 1532-1539.
[44] M. Ondua, E. M. Njoya, M. A. Abdalla, and L. J. McGaw. (2019). "Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation". Journal of Ethnopharmacology. 234 : 27-35. 10.1016/j.jep.2018.12.030.
DOI: https://doi.org/10.1016/j.jep.2018.12.030[45] Preeti, A. Jain, G. Kumar, L. Karthik, and K. V. B. Rao. (2015). "Phytochemical composition and antioxidant activity ofFicus elasticaRoxb. (Moraceae) leaves". Research Journal of Pharmacy and Technology. 8 (3). 10.5958/0974-360x.2015.00043.8.
DOI: https://doi.org/10.5958/0974-360X.2015.00043.8[46] N. H. Pipalia, S. Z. Saad, K. Subramanian, A. Cross, A. Al-Motawa, K. Garg, B. S. J. Blagg, L. Neckers, P. Helquist, O. Wiest, D. S. Ory, and F. R. Maxfield. (2021). "HSP90 inhibitors reduce cholesterol storage in Niemann-Pick type C1 mutant fibroblasts". Journal of Lipid Research. 62 : 100114. 10.1016/j.jlr.2021.100114.
DOI: https://doi.org/10.1016/j.jlr.2021.100114[47] Y. W. Yin, S. Q. Liao, M. J. Zhang, Y. Liu, B. H. Li, Y. Zhou, L. Chen, C. Y. Gao, J. C. Li, and L. L. Zhang. (2014). "TLR4-mediated inflammation promotes foam cell formation of vascular smooth muscle cell by upregulating ACAT1 expression". Cell Death and Disease. 5 (12): e1574. 10.1038/cddis.2014.535.
DOI: https://doi.org/10.1038/cddis.2014.535[48] Y. Fan, R. Zhang, C. Wang, M. Pan, F. Geng, Y. Zhong, H. Su, Y. Kou, X. Mo, E. Lefai, X. Han, A. Chakravarti, and D. Guo. (2024). "STAT3 activation of SCAP-SREBP-1 signaling upregulates fatty acid synthesis to promote tumor growth". Journal of Biological Chemistry. 300 (6): 107351. 10.1016/j.jbc.2024.107351.
DOI: https://doi.org/10.1016/j.jbc.2024.107351[49] L. Jia, C. R. Vianna, M. Fukuda, E. D. Berglund, C. Liu, C. Tao, K. Sun, T. Liu, M. J. Harper, C. E. Lee, S. Lee, P. E. Scherer, and J. K. Elmquist. (2014). "Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance". Nature Communications. 5 : 3878. 10.1038/ncomms4878.
DOI: https://doi.org/10.1038/ncomms4878[50] K. M. Azzam and M. B. Fessler. (2012). "Crosstalk between reverse cholesterol transport and innate immunity". Trends in Endocrinology and Metabolism. 23 (4): 169-78. 10.1016/j.tem.2012.02.001.
DOI: https://doi.org/10.1016/j.tem.2012.02.001[51] P. He, I. C. Gelissen, and A. J. Ammit. (2020). "Regulation of ATP binding cassette transporter A1 (ABCA1) expression: cholesterol-dependent and - independent signaling pathways with relevance to inflammatory lung disease". Respiratory Research. 21 (1): 250. 10.1186/s12931-020-01515-9.
DOI: https://doi.org/10.1186/s12931-020-01515-9[52] C. L. Mei, Z. J. Chen, Y. H. Liao, Y. F. Wang, H. Y. Peng, and Y. Chen. (2007). "Interleukin-10 inhibits the down-regulation of ATP binding cassette transporter A1 by tumour necrosis factor-alpha in THP-1 macrophage-derived foam cells". Cell Biology International. 31 (12): 1456-61. 10.1016/j.cellbi.2007.06.009.
DOI: https://doi.org/10.1016/j.cellbi.2007.06.009[53] J. Y. Lee, K. H. Sohn, S. H. Rhee, and D. Hwang. (2001). "Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4". Journal of Biological Chemistry. 276 (20): 16683-9. 10.1074/jbc.M011695200.
DOI: https://doi.org/10.1074/jbc.M011695200[54] A. D. Zuehlke, K. Beebe, L. Neckers, and T. Prince. (2015). "Regulation and function of the human HSP90AA1 gene". Gene. 570 (1): 8-16. 10.1016/j.gene.2015.06.018.
DOI: https://doi.org/10.1016/j.gene.2015.06.018[55] S. A. Niinuma, L. Lubbad, W. Lubbad, A. S. M. Moin, and A. E. Butler. (2023). "The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature". International Journal of Molecular Sciences. 24 (3). 10.3390/ijms24031838.
DOI: https://doi.org/10.3390/ijms24031838[56] J. R. Krycer, L. J. Sharpe, W. Luu, and A. J. Brown. (2010). "The Akt-SREBP nexus: cell signaling meets lipid metabolism". Trends in Endocrinology and Metabolism. 21 (5): 268-76. 10.1016/j.tem.2010.01.001.
DOI: https://doi.org/10.1016/j.tem.2010.01.001[57] Z. G. Zheng, X. Zhang, X. X. Liu, X. X. Jin, L. Dai, H. M. Cheng, D. Jing, P. M. Thu, M. Zhang, H. Li, J. Zhu, C. Liu, B. Xue, Y. Li, L. Chen, C. Peng, W. Zhu, L. Wang, J. Liu, H. J. Li, P. Li, and X. Xu. (2019). "Inhibition of HSP90beta Improves Lipid Disorders by Promoting Mature SREBPs Degradation via the Ubiquitin-proteasome System". Theranostics. 9 (20): 5769-5783. 10.7150/thno.36505.
DOI: https://doi.org/10.7150/thno.36505[58] M. C. Wheeler and N. Gekakis. (2014). "Hsp90 modulates PPARgamma activity in a mouse model of nonalcoholic fatty liver disease". Journal of Lipid Research. 55 (8): 1702-10. 10.1194/jlr.M048918.
DOI: https://doi.org/10.1194/jlr.M048918[59] R. Ferreira de Freitas and M. Schapira. (2017). "A systematic analysis of atomic protein-ligand interactions in the PDB". MedChemComm. 8 (10): 1970-1981. 10.1039/c7md00381a.
DOI: https://doi.org/10.1039/C7MD00381A[60] M. L. Verteramo, O. Stenstrom, M. M. Ignjatovic, O. Caldararu, M. A. Olsson, F. Manzoni, H. Leffler, E. Oksanen, D. T. Logan, U. J. Nilsson, U. Ryde, and M. Akke. (2019). "Interplay between Conformational Entropy and Solvation Entropy in Protein-Ligand Binding". Journal of the American Chemical Society. 141 (5): 2012-2026. 10.1021/jacs.8b11099.
DOI: https://doi.org/10.1021/jacs.8b11099[61] Y. Lu, R. Wang, C. Y. Yang, and S. Wang. (2007). "Analysis of ligand-bound water molecules in high-resolution crystal structures of protein-ligand complexes". Journal of Chemical Information and Modeling. 47 (2): 668-75. 10.1021/ci6003527.
DOI: https://doi.org/10.1021/ci6003527[62] M. Brylinski. (2018). "Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions". Chemical Biology and Drug Design. 91 (2): 380-390. 10.1111/cbdd.13084.
DOI: https://doi.org/10.1111/cbdd.13084[63] B. W. Matthews. (2001). In: "Encyclopedia of Life Sciences". 10.1038/npg.els.0002975.
DOI: https://doi.org/10.1038/npg.els.0002975Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Gita Susanti, Yufri Aldi, Dian Handayani, Friardi Ismed, Arif Setiawansyah

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.