Green Synthesis of Hierarchical H-ZSM-5 from Sugarcane Bagasse Silica and Application as Catalyst for Conversion of Cellulose into Glucose
DOI:
https://doi.org/10.47352/jmans.2774-3047.248Keywords:
silica SCBA, H-ZSM-5, green template, mesoporous, cellulose hydrolysisAbstract
In this study, a hydrothermal method was applied for the synthesis of hierarchical ZSM-5 from sugarcane bagasse ash (SCBA) as a precursor using starch as a green template. The synthesis was conducted by the hydrothermal method with the molar composition of 1.000:0.250:0.067:30.00 for SiO2:NaOH:Al(OH)3:H2O. For comparison, the synthesis without the use of a template was also conducted. The two zeolites synthesized were then tested as catalysts for glucose production by hydrolysis of cellulose derived from rice husk. The results indicate that starch served as an effective template for the formation of hierarchical ZSM-5 zeolite having mesopores with a surface area of 94.15 m2/g and pore diameter of 2.31 nm. The ZSM-5 synthesized with the use of a template was found to have a crystallinity of 76.33%, while the zeolite prepared without a template had a crystallinity of 79.25%. Hydrolysis experiments reveal that a glucose yield of 69.20% was achieved with the use of the H-ZSM-5 prepared with a template as a catalyst, while with the use of ZSM-5 prepared without a template the glucose yield of 42.42% was achieved. These different results justified the significantly higher performances of the ZSM-5 prepared with a template. Utilization of SCBA as raw material for the synthesis of hierarchical ZSM-5 zeolite is a part of the green chemistry initiative since this research converts the industrial waste into functional material. In addition, the utilization of SCBA is also ecologically beneficial because no excessive chemicals are required in the preparation process.
References
[1]; P. H. Hoang, N. H. Chung, and L. Q. Dien. (2019). "Porous ZSM-5 zeolite catalyst modified with sulfonic acid functional groups for hydrolysis of biomass". Journal of the Iranian Chemical Society. 16 (10): 2203-2210. 10.1007/s13738-019-01692-5.
DOI: https://doi.org/10.1007/s13738-019-01692-5[2]; G. T. Melesse, F. G. Hone, M. A. Mekonnen, and J. Suksaeree. (2022). "Extraction of Cellulose from Sugarcane Bagasse Optimization and Characterization". Advances in Materials Science and Engineering. 2022 1-10. 10.1155/2022/1712207.
DOI: https://doi.org/10.1155/2022/1712207[3]; M. Ramos, E. Laveriano, L. San Sebastián, M. Perez, A. Jiménez, R. M. Lamuela-Raventos, M. C. Garrigós, and A. Vallverdú-Queralt. (2023). "Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry". Trends in Food Science & Technology. 131 14-27. 10.1016/j.tifs.2022.11.020.
DOI: https://doi.org/10.1016/j.tifs.2022.11.020[4]; M. Gummert, N. V. Hung, P. Chivenge, and B. Douthwaite.(2020)." Sustainable Rice Straw Management. 10.1007/978-3-030-32373-8.
DOI: https://doi.org/10.1007/978-3-030-32373-8[5]; F. H. Hibatullah, F. Raidasari, A. P. Triana, V. K. L. Siagian, and T. Simarmata. (2024). "Revealing Food Fulfillment Threads and Innovative Technology for Enhancing Rice Productivity and Ensuring the Food Security in Indonesia". International Journal on Food, Agriculture and Natural Resources. 5 (3): 45-51. 10.46676/ij-fanres.v5i3.316.
DOI: https://doi.org/10.46676/ij-fanres.v5i3.316[6]; S. Magalhaes, C. Fernandes, J. F. S. Pedrosa, L. Alves, B. Medronho, P. J. T. Ferreira, and M. D. G. Rasteiro. (2023). "Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview". Polymers (Basel). 15 (14): 10.3390/polym15143138.
DOI: https://doi.org/10.3390/polym15143138[7]; Megawati, W. B. Sediawan, H. Sulistyo, and M. Hidayat. (2011). "Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: effect of catalyst concentration". Bioresource Technology. 102 (2): 2062-7. 10.1016/j.biortech.2010.09.084.
DOI: https://doi.org/10.1016/j.biortech.2010.09.084[8]; A. Busic, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M. Ivancic Santek, D. Komes, S. Novak, and B. Santek. (2018). "Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review". Food Technology and Biotechnology. 56 (3): 289-311. 10.17113/ftb.56.03.18.5546.
DOI: https://doi.org/10.17113/ftb.56.03.18.5546[9]; P. Lenihan, A. Orozco, E. O’Neill, M. N. M. Ahmad, D. W. Rooney, and G. M. Walker. (2010). "Dilute acid hydrolysis of lignocellulosic biomass". Chemical Engineering Journal. 156 (2): 395-403. 10.1016/j.cej.2009.10.061.
DOI: https://doi.org/10.1016/j.cej.2009.10.061[10]; F. Talebnia, D. Karakashev, and I. Angelidaki. (2010). "Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation". Bioresource Technology. 101 (13): 4744-53. 10.1016/j.biortech.2009.11.080.
DOI: https://doi.org/10.1016/j.biortech.2009.11.080[11]; F. Yang, Y. Li, Q. Zhang, X. Sun, H. Fan, N. Xu, and G. Li. (2015). "Selective conversion of cotton cellulose to glucose and 5-hydroxymethyl furfural with SO4(2-)/MxOy solid superacid catalyst". Carbohydrate Polymers. 131 9-14. 10.1016/j.carbpol.2015.05.036.
DOI: https://doi.org/10.1016/j.carbpol.2015.05.036[12]; H. Yang, Y. Zhou, D. Tong, M. Yang, K. Fang, C. Zhou, and W. Yu. (2020). "Catalytic conversion of cellulose to reducing sugars over clay-based solid acid catalyst supported nanosized SO42−-ZrO2". Applied Clay Science. 185 10.1016/j.clay.2019.105376.
DOI: https://doi.org/10.1016/j.clay.2019.105376[13]; Y. Jin, C. Lai, Y. Li, and X. Cheng. (2020). "Preparation and catalytic performance of biomass-based solid acid catalyst from Pennisetum sinense for cellulose hydrolysis". International Journal of Biological Macromolecules. 165 (Pt A): 1149-1155. 10.1016/j.ijbiomac.2020.09.256.
DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.256[14]; M. Rilyanti, U. N. Faidah, S. Suharso, K. D. Pandiangan, and I. Ilim. (2021). "Utilization of zeolite H-MOR based on bagasse ash silica as a catalyst for the hydrolysis reaction of cassava peel cellulose for glucose production". Journal of Physics: Conference Series. 1751 (1): 10.1088/1742-6596/1751/1/012103.
DOI: https://doi.org/10.1088/1742-6596/1751/1/012103[15]; M. Zhang, X. Liu, and Z. Yan. (2016). "Soluble starch as in-situ template to synthesize ZSM-5 zeolite with intracrystal mesopores". Materials Letters. 164 543-546. 10.1016/j.matlet.2015.10.044.
DOI: https://doi.org/10.1016/j.matlet.2015.10.044[16]; Q. Che, M. Yang, X. Wang, Q. Yang, Y. Chen, X. Chen, W. Chen, J. Hu, K. Zeng, H. Yang, and H. Chen. (2019). "Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis". Bioresource Technology. 289 121729. 10.1016/j.biortech.2019.121729.
DOI: https://doi.org/10.1016/j.biortech.2019.121729[17]; L. Wang, C. Yin, Z. Shan, S. Liu, Y. Du, and F.-S. Xiao. (2009). "Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 340 (1-3): 126-130. 10.1016/j.colsurfa.2009.03.013.
DOI: https://doi.org/10.1016/j.colsurfa.2009.03.013[18]; Y. Liu, Q. Luo, H. Lu, and Z. Wang. (2019). "The influencing factors of hydrothermal synthesis of ZSM-5 zeolite and its adsorption of phenol, quinoline and indole". Materials Research Express. 6 (11): 10.1088/2053-1591/ab4e45.
DOI: https://doi.org/10.1088/2053-1591/ab4e45[19]; Y.-J. Wang, J.-P. Cao, X.-Y. Ren, X.-B. Feng, X.-Y. Zhao, Y. Huang, and X.-Y. Wei. (2020). "Synthesis of ZSM-5 using different silicon and aluminum sources nature for catalytic conversion of lignite pyrolysis volatiles to light aromatics". Fuel. 268 10.1016/j.fuel.2020.117286.
DOI: https://doi.org/10.1016/j.fuel.2020.117286[20]; Z. G. L. V. Sari, H. Younesi, and H. Kazemian. (2014). "Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source". Applied Nanoscience. 5 (6): 737-745. 10.1007/s13204-014-0370-x.
DOI: https://doi.org/10.1007/s13204-014-0370-x[21]; M. Rilyanti, B. Buhani, S. Suharso, and K. D. Pandiangan. (2022). "Metoda Ekstraksi Silika dari Ampas Tebu (Bagasse) sebagai Prekursor Utama dalam Sintesis ZSM-5". Indonesia.
[22]; K. Kordatos, A. Ntziouni, L. Iliadis, and V. Kasselouri-Rigopoulou. (2013). "Utilization of amorphous rice husk ash for the synthesis of ZSM-5 zeolite under low temperature". Journal of Material Cycles and Waste Management. 15 (4): 571-580. 10.1007/s10163-013-0141-x.
DOI: https://doi.org/10.1007/s10163-013-0141-x[23]; M. H. Nada and S. C. Larsen. (2017). "Insight into seed-assisted template free synthesis of ZSM-5 zeolites". Microporous and Mesoporous Materials. 239 444-452. 10.1016/j.micromeso.2016.10.040.
DOI: https://doi.org/10.1016/j.micromeso.2016.10.040[24]; H. S. Hafid, F. N. Omar, J. Zhu, and M. Wakisaka. (2021). "Enhanced crystallinity and thermal properties of cellulose from rice husk using acid hydrolysis treatment". Carbohydrate Polymers. 260 117789. 10.1016/j.carbpol.2021.117789.
DOI: https://doi.org/10.1016/j.carbpol.2021.117789[25]; L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad. (1959). "An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer". Textile Research Journal. 29 (10): 786-794. 10.1177/004051755902901003.
DOI: https://doi.org/10.1177/004051755902901003[26]; K. Intaramas, W. Jonglertjunya, N. Laosiripojana, and C. Sakdaronnarong. (2018). "Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis". Energy. 149 837-847. 10.1016/j.energy.2018.02.073.
DOI: https://doi.org/10.1016/j.energy.2018.02.073[27]; M. P. Moisés, C. T. P. da Silva, J. G. Meneguin, E. M. Girotto, and E. Radovanovic. (2013). "Synthesis of zeolite NaA from sugarcane bagasse ash". Materials Letters. 108 243-246. 10.1016/j.matlet.2013.06.086.
DOI: https://doi.org/10.1016/j.matlet.2013.06.086[28]; S. Azat, A. V. Korobeinyk, K. Moustakas, and V. J. Inglezakis. (2019). "Sustainable production of pure silica from rice husk waste in Kazakhstan". Journal of Cleaner Production. 217 352-359. 10.1016/j.jclepro.2019.01.142.
DOI: https://doi.org/10.1016/j.jclepro.2019.01.142[29]; S. Norsuraya, H. Fazlena, and R. Norhasyimi. (2016). "Sugarcane Bagasse as a Renewable Source of Silica to Synthesize Santa Barbara Amorphous-15 (SBA-15)". Procedia Engineering. 148 839-846. 10.1016/j.proeng.2016.06.627.
DOI: https://doi.org/10.1016/j.proeng.2016.06.627[30]; D. Hu, Q. H. Xia, X. H. Lu, X. B. Luo, and Z. M. Liu. (2008). "Synthesis of ultrafine zeolites by dry-gel conversion without any organic additive". Materials Research Bulletin. 43 (12): 3553-3561. 10.1016/j.materresbull.2008.01.008.
DOI: https://doi.org/10.1016/j.materresbull.2008.01.008[31]; M. Hamidzadeh, S. Komeili, and M. Saeidi. (2018). "Seed-induced synthesis of ZSM-5 aggregates using the Silicate-1 as a seed: Characterization and effect of the Silicate-1 composition". Microporous and Mesoporous Materials. 268 153-161. 10.1016/j.micromeso.2018.04.016.
DOI: https://doi.org/10.1016/j.micromeso.2018.04.016[32]; M. Rilyanti, R. R. Mukti, G. T. M. Kadja, M. Ogura, H. Nur, E.-P. Ng, and Ismunandar. (2016). "On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity". Microporous and Mesoporous Materials. 230 30-38. 10.1016/j.micromeso.2016.04.038.
DOI: https://doi.org/10.1016/j.micromeso.2016.04.038[33]; G. T. M. Kadja, R. R. Mukti, Z. Liu, M. Rilyanti, Ismunandar, I. N. Marsih, M. Ogura, T. Wakihara, and T. Okubo. (2016). "Mesoporogen-free synthesis of hierarchically porous ZSM-5 below 100 °C". Microporous and Mesoporous Materials. 226 344-352. 10.1016/j.micromeso.2016.02.007.
DOI: https://doi.org/10.1016/j.micromeso.2016.02.007[34]; X. Niu, Y. Bai, Y. E. Du, H. Qi, and Y. Chen. (2022). "Size controllable synthesis of ZSM-5 zeolite and its catalytic performance in the reaction of methanol conversion to aromatics". Royal Society Open Science. 9 (3): 211284. 10.1098/rsos.211284.
DOI: https://doi.org/10.1098/rsos.211284[35]; C. Schlumberger and M. Thommes. (2021). "Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review". Advanced Materials Interfaces. 8 (4): 10.1002/admi.202002181.
DOI: https://doi.org/10.1002/admi.202002181[36]; M. Wang, Z. Li, Z. Liang, Z. Jiang, and W. Wu. (2023). "Method Selection for Analyzing the Mesopore Structure of Shale—Using a Combination of Multifractal Theory and Low-Pressure Gas Adsorption". Energies. 16 (5): 10.3390/en16052464.
DOI: https://doi.org/10.3390/en16052464[37]; C. Venkatesan, H. Park, J. Kim, S. Lee, and R. Ryoo. (2019). "Facile synthesis of mesoporous zeolite Y using seed gel and amphiphilic organosilane". Microporous and Mesoporous Materials. 288 10.1016/j.micromeso.2019.109579.
DOI: https://doi.org/10.1016/j.micromeso.2019.109579[38]; C. Zhang, K. Fan, G. Ma, C. Lei, W. Xu, J. Jiang, B. Sun, H. Zhang, Y. Zhu, and S. Wen. (2021). "Efficient Synthesis of Mesoporous Nano ZSM-5 Zeolite Crystals without a Mesoscale Template". Crystals. 11 (10): 10.3390/cryst11101247.
DOI: https://doi.org/10.3390/cryst11101247[39]; J. Pérez‐Ramírez, D. Verboekend, A. Bonilla, and S. Abelló. (2009). "Zeolite Catalysts with Tunable Hierarchy Factor by Pore‐Growth Moderators". Advanced Functional Materials. 19 (24): 3972-3979. 10.1002/adfm.200901394.
DOI: https://doi.org/10.1002/adfm.200901394[40]; W. H. Madhushani, R. W. I. B. Priyadarshana, S. R. W. M. C. J. K. Ranawana, K. G. C. Senarathna, and P. E. Kaliyadasa. (2021). "Determining the Crystallinity Index of Cellulose in Chemically and Mechanically Extracted Banana Fiber for the Synthesis of Nanocellulose". Journal of Natural Fibers. 19 (14): 7973-7981. 10.1080/15440478.2021.1958428.
DOI: https://doi.org/10.1080/15440478.2021.1958428[41]; M. A. Adekoya, S. Liu, S. S. Oluyamo, O. T. Oyeleye, and R. T. Ogundare. (2022). "Influence of size classifications on the crystallinity index of Albizia gummifera cellulose". Heliyon. 8 (12): e12019. 10.1016/j.heliyon.2022.e12019.
DOI: https://doi.org/10.1016/j.heliyon.2022.e12019[42]; N. Johar, I. Ahmad, and A. Dufresne. (2012). "Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk". Industrial Crops and Products. 37 (1): 93-99. 10.1016/j.indcrop.2011.12.016.
DOI: https://doi.org/10.1016/j.indcrop.2011.12.016[43]; K. Y. Nandiwale, N. D. Galande, P. Thakur, S. D. Sawant, V. P. Zambre, and V. V. Bokade. (2014). "One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst". ACS Sustainable Chemistry & Engineering. 2 (7): 1928-1932. 10.1021/sc500270z.
DOI: https://doi.org/10.1021/sc500270z[44]; M. Rilyanti, A. D. W. Ningrum, Z. A. Zahra, S. Suharso, B. Buhani, Y. Y, and S. Hadi. (2023). "Hierarchical ZSM-5 Based on Silica Bagasse and Mesopore Template from Starch as Catalyst for Glucose Production". Asian Journal of Chemistry. 35 (2): 441-446. 10.14233/ajchem.2023.24059.
DOI: https://doi.org/10.14233/ajchem.2023.24059[45] A. Maghfirah, M. M. Ilmi, A. T. N. Fajar, and G. T. M. Kadja. (2020). "A review on the green synthesis of hierarchically porous zeolite". Materials Today Chemistry. 17 10.1016/j.mtchem.2020.100348.
DOI: https://doi.org/10.1016/j.mtchem.2020.100348Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mita Rilyanti, Azizah Dewi Wahyu Ningrum, Ilim Ilim, Suharso Suharso, Mulyono Mulyono, Muhammad Ayoub, Wasinton Simanjuntak

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.
Funding data
-
Universitas Lampung
Grant numbers 2993/UN26.21/PN/2023 -
Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi
Grant numbers 057/E5/PG.02.00.PL/2024