Acute Toxicity Study of the Leaf and Fruit Extracts of Avicennia marina (Forssk.) on Wistar White Male Mice

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.247

Keywords:

Avicennia marina, toxicity test, LD50, anti-fertility, histopathology, herbal medicine

Abstract

Avicennia marina has at least 36 types of flavonoid compounds that are potential anti-fertility agents. The study's objectives were to obtain safe doses and assess the potential risks of using A. marina extract. Toxicity testing was conducted on Wistar rats with doses of 0, 250, 500, 1000, 2000, and 4000 mg/kg BW for leaf and fruit extracts. Observations were made to measure the level of mortality and damage to important organs (liver, kidneys, and testes) both macroscopically and microscopically. Macroscopic observation included identifying changes in shape, color, and size. Microscopic observation was done to observe organ damage through histopathological tests. Results of the study show that the administration of A. marina extract, both leaf and fruit, resulted in a 100 % survival rate at all doses given and the LD50 >8 g/kg BW. Both leaf and fruit extracts of A. marina also did not cause a decrease in the size of the kidneys and testes, but at high doses, they potentially reduced liver size. These findings indicate that using A. marina extract at recommended doses is safe. Both leaf and fruit extracts of A. marina, at a dose of 250 mg/kg BW, did not cause negative effects on the major organs (liver, kidneys, and testes) of mice. This finding suggests that using A. marina extract at 250 mg/kg BW is safe for long-term use. Administration of A. marina extract at doses up to 500 mg/kg BW did not cause liver damage in mice, but it potentially caused mild kidney damage. This finding indicates that leaf and fruit extracts of A. marina still have the potential to be used as drug candidates but with dosage regulation below 500 mg/kg BW. Administration of leaf and fruit extracts at doses of 500, 1000, and 2000 mg/kg BW has been shown to reduce the fertility of mouse sperm cells by up to 30%. This finding indicates that A. marina has the potential to be a promising, safe herbal anti-fertility agent.

References

[1] D. M. Alongi. (2018). "Impact of Global Change on Nutrient Dynamics in Mangrove Forests". Forests. 9 (10). 10.3390/f9100596.

DOI: https://doi.org/10.3390/f9100596

[2] Y. S. Kurniawan, T. Indriani, H. Amrulloh, L. C. Adi, A. C. Imawan, K. T. A. Priyangga, and E. Yudha. (2023). "The Journey of Natural Products: From Isolation Stage to Drug’s Approval in Clinical Trials". Bioactivities. 1 (2): 43-60. 10.47352/bioactivities.2963-654X.190.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.190

[3] Y. Sun, J. Ouyang, Z. Deng, Q. Li, and W. Lin. (2008). "Structure elucidation of five new iridoid glucosides from the leaves of Avicennia marina". Magnetic Resonance in Chemistry. 46 (7): 638-42. 10.1002/mrc.2224.

DOI: https://doi.org/10.1002/mrc.2224

[4] F. Siharis, N. Ikawati, and N. Lolok. (2019). "The Potency of Antifertility Effect of Stem Bark Extract of Mangrove (Avicennia Marina) on Male White Rats (Rattus Novergicus)". The Proceedings of the 6th International Conference on Advanced Molecular Bioscience and Biomedical Engineering. 10.5220/0009587701410146.

DOI: https://doi.org/10.5220/0009587701410146

[5] F. Cerri, M. Giustra, Y. Anadol, G. Tomaino, P. Galli, M. Labra, L. Campone, and M. Colombo. (2022). "Natural Products from Mangroves: An Overview of the Anticancer Potential of Avicennia marina". Pharmaceutics. 14 (12).  10.3390/pharmaceutics14122793.

DOI: https://doi.org/10.3390/pharmaceutics14122793

[6] Rodiani, Duryat, T. Maryono, and D. A. Ramdini. (2023). "Avicennia Marina: A Natural Resource for Male Anti-Fertility in Family Planning". International Journal of Design & Nature and Ecodynamics. 18 (5): 1077-1085. 10.18280/ijdne.180508.

DOI: https://doi.org/10.18280/ijdne.180508

[7] M. A. Akbarsha and P. Murugaian. (2000). "Aspects of the male reproductive toxicity/male antifertility property of andrographolide in albino rats: effect on the testis and the cauda epididymidal spermatozoa". Phytotherapy Research. 14 (6): 432-5. 10.1002/1099-1573(200009)14:6<432::aid-ptr622>3.0.co;2-i.

[8] M. T. Shaaban, G. M. Fahmy, E. H. Saad, and H. S. Salama. (2024). "Clove and Peppermint Essential Oils Effect on Pathogenic Gut Micro-Biota in Chronic Hepatic Disease Patients". Bioactivities. 2 (1): 24-29. 10.47352/bioactivities.2963-654X.213.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.213

[9] M. Maneesh, H. Jayalekshmi, S. Dutta, A. Chakrabarti, and D. M. Vasudevan. (2005). "Role of oxidative stress in ethanol induced germ cell apoptosis - An experimental study in rats". Indian Journal of Clinical Biochemistry. 20 (2): 62-7. 10.1007/BF02867402.

DOI: https://doi.org/10.1007/BF02867402

[10] K. Sak. (2023). "The Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication". Bioactivities. 1 (2): 39-42. 10.47352/bioactivities.2963-654X.187.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.187

[11] X. Zhang and C. Wu. (2022). "In Silico, In Vitro, and In Vivo Evaluation of the Developmental Toxicity, Estrogenic Activity, and Mutagenicity of Four Natural Phenolic Flavonoids at Low Exposure Levels". ACS Omega. 7 (6): 4757-4768. 10.1021/acsomega.1c04239.

DOI: https://doi.org/10.1021/acsomega.1c04239

[12] K. Kumari, P. Adhikari, A. Pandey, S. S. Samant, M. Lal, and V. Pande. (2024). "Influence of Solvent Polarity on Phytochemicals, Antioxidants, and Antimicrobial Properties of Delphinium denudatum: A Medicinal Herb from Sainj Valley, Himachal Pradesh, India". Bioactivities. 2 (1): 30-40. 10.47352/bioactivities.2963-654X.214.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.214

[13] S. Kiran, A. Aslam, A. Parveen, M. Dilshad, and S. Hussain. (2024). "Phytochemistry of Punica granatum Fruit: Its Nutritional and Biological Potential". Bioactivities. 2 (1): 57-73. 10.47352/bioactivities.2963-654X.220.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.220

[14] A. Aydιn, G. Aktay, and E. Yesilada. (2016). "A Guidance Manual for the Toxicity Assessment of Traditional Herbal Medicines". Natural Product Communications. 11 (11). 10.1177/1934578x1601101131.

DOI: https://doi.org/10.1177/1934578X1601101131

[15] C. S. J. Woo, J. S. H. Lau, and H. El-Nezami. (2012). In: "Recent Trends in Medicinal Plants Research, (Advances in Botanical Research". 365-384. 10.1016/b978-0-12-394591-4.00009-x.

DOI: https://doi.org/10.1016/B978-0-12-394591-4.00009-X

[16] E. L. Andrade, A. F. Bento, J. Cavalli, S. K. Oliveira, R. C. Schwanke, J. M. Siqueira, C. S. Freitas, R. Marcon, and J. B. Calixto. (2016). "Non-clinical studies in the process of new drug development - Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies". Brazilian Journal of Medical and Biological Research. 49 (12): e5646. 10.1590/1414-431X20165646.

DOI: https://doi.org/10.1590/1414-431x20165646

[17] S. Parasuraman, G. S. Thing, and S. A. Dhanaraj. (2014). "Polyherbal formulation: Concept of ayurveda". Pharmacognosy Reviews. 8 (16): 73-80. 10.4103/0973-7847.134229.

DOI: https://doi.org/10.4103/0973-7847.134229

[18] C. H. C. Leenaars, C. Kouwenaar, F. R. Stafleu, A. Bleich, M. Ritskes-Hoitinga, R. B. M. De Vries, and F. L. B. Meijboom. (2019). "Animal to human translation: a systematic scoping review of reported concordance rates". Journal of Translational Medicine. 17 (1): 223. 10.1186/s12967-019-1976-2.

DOI: https://doi.org/10.1186/s12967-019-1976-2

[19] Rozirwan, R. Y. Nugroho, M. Hendri, Fauziyah, W. A. E. Putri, and A. Agussalim. (2022). "Phytochemical profile and toxicity of extracts from the leaf of Avicennia marina (Forssk.) Vierh. collected in mangrove areas affected by port activities". South African Journal of Botany. 150 : 903-919. 10.1016/j.sajb.2022.08.037.

DOI: https://doi.org/10.1016/j.sajb.2022.08.037

[20] M. K. Okla, A. A. Alatar, S. S. Al-Amri, W. H. Soufan, A. Ahmad, and M. A. Abdel-Maksoud. (2021). "Antibacterial and Antifungal Activity of the Extracts of Different Parts of Avicennia marina (Forssk.) Vierh". Plants (Basel). 10 (2).  10.3390/plants10020252.

DOI: https://doi.org/10.3390/plants10020252

[21] H. A. H. Ibrahim, H. H. Abdel-Latif, and E. H. Zaghloul. (2022). "Phytochemical composition of Avicennia marina leaf extract, its antioxidant, antimicrobial potentials and inhibitory properties on Pseudomonas fluorescens biofilm". Egyptian Journal of Aquatic Research. 48 (1): 29-35. 10.1016/j.ejar.2021.10.007.

DOI: https://doi.org/10.1016/j.ejar.2021.10.007

[22] W. N. Aye, X. Tong, J. Li, and A. W. Tun. (2023). "Assessing the Carbon Storage Potential of a Young Mangrove Plantation in Myanmar". Forests. 14 (4).  10.3390/f14040824.

DOI: https://doi.org/10.3390/f14040824

[23] P. J. Hogarth. (2015). "The Biology of Mangroves and Seagrasses". 10.1093/acprof:oso/9780198716549.001.0001.

DOI: https://doi.org/10.1093/acprof:oso/9780198716549.001.0001

[24] M. Abu El-Regal and S. Satheesh. (2023). In: "Marine Ecosystems: A Unique Source of Valuable Bioactive Compounds, (Marine Ecology: Current and Future Developments". 1-42. 10.2174/9789815051995123030003.

DOI: https://doi.org/10.2174/9789815051995123030003

[25] D. Rančić, I. Pećinar, S. Aćić, and Z. D. Stevanović. (2019). In: "Halophytes and climate change: adaptive mechanisms and potential uses". 152-178. 10.1079/9781786394330.0152.

DOI: https://doi.org/10.1079/9781786394330.0152

[26] N. Hasani, H. Rika, and J. Elin. (2023). "Antimicrobial activity test of 96% ethanol extract of flowers, leaves, and stem bark of tigarun (crateva magna dc.) Against staphylococcus aureus and malassezia furfur". Medical Sains : Jurnal Ilmiah Kefarmasian. 8 (3): 1009-1018. 10.37874/ms.v8i3.848.

DOI: https://doi.org/10.37874/ms.v8i3.848

[27] M. H. Zarei, Z. Lorigooini, H. Amini Khoei, and E. Bijad. (2023). "Acute oral toxicity assessment of galbanic acid in albino rat according to OECD 425 TG". Toxicology Reports. 11 : 111-115. 10.1016/j.toxrep.2023.07.001.

DOI: https://doi.org/10.1016/j.toxrep.2023.07.001

[28] M. A. Ahmed, E. O. Ameyaw, F. Ackah-Armah, D. O. Acheampong, P. K. Gathumbi, M. B. Adinortey, G. Ghartey-Kwansah, H. R. Otsyina, and C. K. Adokoh. (2022). "In Vitro and In Vivo Toxicological Evaluation of Avicennia africana P: Beauv. (Avicenniaceae) Leaf Extract in a Rat Model". Journal of Toxicology. 2022 : 3434383. 10.1155/2022/3434383.

DOI: https://doi.org/10.1155/2022/3434383

[29] J. M. Beula, M. Gnanadesigan, P. B. Rajkumar, S. Ravikumar, and M. Anand. (2012). "Antiviral, antioxidant and toxicological evaluation of mangrove plant from South East coast of India". Asian Pacific Journal of Tropical Biomedicine. 2 (1): S352-S357. 10.1016/s2221-1691(12)60187-7.

DOI: https://doi.org/10.1016/S2221-1691(12)60187-7

[30] G. Xiu-mei, H. Wei-Dong, and Y. Zen-ji. (2008). "The acute toxicity and bone-merrow micronucleus tests of water extract from Avicennia marina fruits in mice". Journal of Coastal Development. 11 (2): 20-74.

[31] B. H. Ali and A. K. Bashir. (1998). "Toxicological studies on the leaves ofAvicennia marina (mangrove) in rats". Journal of Applied Toxicology. 18 (2): 111-116. 10.1002/(sici)1099-1263(199803/04)18:2<111::Aid-jat481>3.0.Co;2-9.

[32] B. R. Friesen, R. N. Gibson, T. Speer, J. M. Vincent, D. Stella, and N. A. Collier. (2011). "Lobar and segmental liver atrophy associated with hilar cholangiocarcinoma and the impact of hilar biliary anatomical variants: a pictorial essay". Insights Imaging. 2 (5): 525-531. 10.1007/s13244-011-0100-9.

DOI: https://doi.org/10.1007/s13244-011-0100-9

[33] I. M. Petyaev, P. Y. Dovgalevsky, V. A. Klochkov, N. E. Chalyk, D. V. Pristensky, M. P. Chernyshova, R. Udumyan, T. Kocharyan, N. H. Kyle, M. V. Lozbiakova, and Y. K. Bashmakov. (2018). "Effect of lycopene supplementation on cardiovascular parameters and markers of inflammation and oxidation in patients with coronary vascular disease". Food Science and Nutrition. 6 (6): 1770-1777. 10.1002/fsn3.734.

DOI: https://doi.org/10.1002/fsn3.734

[34] B. A. Neuschwander-Tetri and S. H. Caldwell. (2003). "Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference". Hepatology. 37 (5): 1202-19. 10.1053/jhep.2003.50193.

DOI: https://doi.org/10.1053/jhep.2003.50193

[35] M. E. Meneses, D. Martinez-Carrera, L. Gonzalez-Ibanez, N. Torres, M. Sanchez-Tapia, C. C. Marquez-Mota, G. Rendon, V. Mitzi, A. Morales, I. Tello-Salgado, and A. R. Tovar. (2023). "Effects of Mexican Ganoderma lucidum extracts on liver, kidney, and the gut microbiota of Wistar rats: A repeated dose oral toxicity study". PLoS One. 18 (4): e0283605. 10.1371/journal.pone.0283605.

DOI: https://doi.org/10.1371/journal.pone.0283605

[36] X. Xu, R. Zhu, J. Ying, M. Zhao, X. Wu, G. Cao, and K. Wang. (2020). "Nephrotoxicity of Herbal Medicine and Its Prevention". Frontiers in Pharmacology. 11 : 569551. 10.3389/fphar.2020.569551.

DOI: https://doi.org/10.3389/fphar.2020.569551

[37] F. Nalimu, J. Oloro, E. L. Peter, and P. E. Ogwang. (2022). "Acute and sub-acute oral toxicity of aqueous whole leaf and green rind extracts of Aloe vera in Wistar rats". BMC Complementary Medicine and Therapies. 22 (1): 16. 10.1186/s12906-021-03470-4.

DOI: https://doi.org/10.1186/s12906-021-03470-4

[38] A. Jităreanu, A. Trifan, M. Vieriu, I.-C. Caba, I. Mârțu, and L. Agoroaei. (2022). "Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review". Processes. 11 (1). 10.3390/pr11010083.

DOI: https://doi.org/10.3390/pr11010083

[39] A. C. Liwa. (2016). "Renal Diseases and Use of Medicinal Herbal Extracts: A Concise Update of Reported Literature in Africa". Nephrology & Renal Therapy. 2 (2): 1-5. 10.24966/nrt-7313/100008.

DOI: https://doi.org/10.24966/NRT-7313/100008

[40] S. W. Choi, K. I. Park, J. T. Yeon, B. J. Ryu, K. J. Kim, and S. H. Kim. (2014). "Anti-osteoclastogenic activity of matairesinol via suppression of p38/ERK-NFATc1 signaling axis". BMC Complementary Medicine and Therapies. 14 : 35. 10.1186/1472-6882-14-35.

DOI: https://doi.org/10.1186/1472-6882-14-35

[41] Duryat, Rodiani, and T. Maryono. (2023). "Mangroves species diversity and their use as medicinal plants by coastal communities of Pesawaran Lampung". IOP Conference Series: Earth and Environmental Science. 1255 (1). 10.1088/1755-1315/1255/1/012027.

DOI: https://doi.org/10.1088/1755-1315/1255/1/012027

[42] T. M. Htay, K. K. Sann, and H. Haini. (2023). "A Comparative Study on Phytochemical Screening and Antioxidant Activity of Aqueous Extract from Various Parts of Bauhinia purpurea". Bioactivities. 1 (1): 24-31. 10.47352/bioactivities.2963-654X.183.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.183

[43] L. Abenavoli, A. A. Izzo, N. Milic, C. Cicala, A. Santini, and R. Capasso. (2018). "Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases". Phytotherapy Research. 32 (11): 2202-2213. 10.1002/ptr.6171.

DOI: https://doi.org/10.1002/ptr.6171

Downloads

Published

2025-01-31

How to Cite

[1]
D. Duryat, R. Rodiani, and T. Maryono, “Acute Toxicity Study of the Leaf and Fruit Extracts of Avicennia marina (Forssk.) on Wistar White Male Mice”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 1, pp. 288–304, Jan. 2025.

Funding data