Integrating The Network Pharmacology and Molecular Docking Confirmed with In Vitro Toxicity to Reveal Potential Mechanism of Non–Polar Fraction of Cyperus rotundus Linn as Anti-Cancer Candidate

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.228

Keywords:

network pharmacology, molecular docking, anti-cancer, Cyperus rotundus, LC-MS

Abstract

Cyperus rotundus Linn is a plant that is historically used in traditional medicine with anti-cancer potential. Despite the evidence of C. rotundus anti-cancer effect on various human carcinoma cell lines, its pharmacological mechanism remains unclear, particularly its non-polar fraction. This study was employed to provide mechanistic insight regarding the anti-cancer properties of C. rotundus non-polar fraction by integrating in silico and in vitro approach. The network pharmacology study was used to observe the molecular targets of n-hexane fraction of C. rotundus, confirmed by molecular docking simulation using Autodock 4.2. The in vitro toxicity using BSLT method was used to strengthen the in silico result. The network pharmacology investigation revealed several core targets including PI3K, MAPK1, mTOR, RAF1, and NF-κB in the potential anti-cancer mechanism of C. rotundus. The molecular docking study illustrated that compound (Isopetasol) and compound 9 (alpha-cyperone) as the most promising compound in n-hexane fraction of C. rotundus, with free binding energies consistently less than -7 kcal/mol in all targets. The in vitro BSLT signified the in silico results, highlighting the highest toxicity of fraction 3 exhibited among others. Integrating the network pharmacology and molecular docking simulation along with in vitro toxicity have provided evidence of the anti-cancer potential of n-hexane fraction of C. rotundus. Specific compounds and the molecular targets responsible for its anti-cancer properties have been identified, warranting further investigations.

References

[1] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. (2021). "Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries". CA: A Cancer Journal for Clinicians. 71 (3): 209-249. 10.3322/caac.21660.

DOI: https://doi.org/10.3322/caac.21660

[2] R. Shafabakhsh, R. J. Reiter, H. Mirzaei, S. N. Teymoordash, and Z. Asemi. (2019). "Melatonin: A new inhibitor agent for cervical cancer treatment". Journal of Cellular Physiology. 234 (12): 21670-21682. 10.1002/jcp.28865.

DOI: https://doi.org/10.1002/jcp.28865

[3] N. A. G. dos Santos, N. M. Martins, C. Curti, M. d. L. Pires Bianchi, and A. C. dos Santos. (2007). "Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats". Chemico-Biological Interactions. 170 (3): 177-186. 10.1016/j.cbi.2007.07.014.

DOI: https://doi.org/10.1016/j.cbi.2007.07.014

[4] P. S. Rawat, A. Jaiswal, A. Khurana, J. S. Bhatti, and U. Navik. (2021). "Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management". Biomedicine & Pharmacotherapy. 139 : 111708. 10.1016/j.biopha.2021.111708.

DOI: https://doi.org/10.1016/j.biopha.2021.111708

[5] R. P. Miller, R. K. Tadagavadi, G. Ramesh, and W. B. Reeves. (2010). "Mechanisms of Cisplatin nephrotoxicity". Toxins (Basel). 2 (11): 2490-518. 10.3390/toxins2112490.

DOI: https://doi.org/10.3390/toxins2112490

[6] D. J. Newman and G. M. Cragg. (2020). "Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019". Journal of Natural Products. 83 (3): 770-803. 10.1021/acs.jnatprod.9b01285.

DOI: https://doi.org/10.1021/acs.jnatprod.9b01285

[7] M. M. Alam, M. Naeem, M. M. A. Khan, and M. Uddin. (2017). In: "Catharanthus roseus, ch. Chapter 11". 277-307. 10.1007/978-3-319-51620-2_11.

DOI: https://doi.org/10.1007/978-3-319-51620-2_11

[8] V. Nikolic, I. Savic, I. Savic, L. Nikolic, M. Stankovic, and V. Marinkovic. (2011). "Paclitaxel as an anticancer agent: isolation, activity, synthesis and stability". Open Medicine. 6 (5): 527-536. 10.2478/s11536-011-0074-5.

DOI: https://doi.org/10.2478/s11536-011-0074-5

[9] S. Motyka, K. Jafernik, H. Ekiert, J. Sharifi-Rad, D. Calina, B. Al-Omari, A. Szopa, and W. C. Cho. (2023). "Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy". Biomedicine & Pharmacotherapy. 158 : 114145. 10.1016/j.biopha.2022.114145.

DOI: https://doi.org/10.1016/j.biopha.2022.114145

[10] M. L. Costa, J. A. Rodrigues, J. Azevedo, V. Vasconcelos, E. Eiras, and M. G. Campos. (2018). "Hepatotoxicity induced by paclitaxel interaction with turmeric in association with a microcystin from a contaminated dietary supplement". Toxicon. 150 : 207-211. 10.1016/j.toxicon.2018.05.022.

DOI: https://doi.org/10.1016/j.toxicon.2018.05.022

[11] Y. S. Kurniawan, K. Gurning, I. Iksen, and A. Bikharudin. (2024). "Fight for Cancer Diseases using Natural Compounds and Their Semisynthetic Derivatives". Bioactivities.  10.47352/bioactivities.2963-654X.221.

DOI: https://doi.org/10.47352/bioactivities.2963-654X.221

[12] E. Herradon, C. Gonzalez, A. Gonzalez, J. A. Uranga, and V. Lopez-Miranda. (2021). "Cardiovascular Toxicity Induced by Chronic Vincristine Treatment". Frontiers in Pharmacology. 12 : 692970. 10.3389/fphar.2021.692970.

DOI: https://doi.org/10.3389/fphar.2021.692970

[13] F. G. Rocha, M. M. Brandenburg, P. L. Pawloski, B. D. S. Soley, S. C. A. Costa, C. C. Meinerz, I. P. Baretta, M. F. Otuki, and D. A. Cabrini. (2020). "Preclinical study of the topical anti-inflammatory activity of Cyperus rotundus L. extract (Cyperaceae) in models of skin inflammation". Journal of Ethnopharmacology. 254 : 112709. 10.1016/j.jep.2020.112709.

DOI: https://doi.org/10.1016/j.jep.2020.112709

[14] P. Singh, R. L. Khosa, G. Mishra, and K. K. Jha. (2015). "Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice". Journal of Pharmacy and Bioallied Sciences. 7 (4): 289-92. 10.4103/0975-7406.168028.

DOI: https://doi.org/10.4103/0975-7406.168028

[15] P. G. Daswani, S. Brijesh, P. Tetali, and T. J. Birdi. (2011). "Studies on the activity of Cyperus rotundus Linn. tubers against infectious diarrhea". Indian Journal of Pharmacology. 43 (3): 340-4. 10.4103/0253-7613.81502.

DOI: https://doi.org/10.4103/0253-7613.81502

[16] N. Utami, S. Susianti, S. Bakri, B. Kurniawan, and A. Setiawansyah. (2023). "Cytotoxic activity of Cyperus rotundus L. rhizome collected from three ecological zones in Lampung-Indonesia against HeLa cervical cancer cell". Journal of Applied Pharmaceutical Science.  10.7324/japs.2023.113764.

DOI: https://doi.org/10.7324/JAPS.2023.113764

[17] P. Mannarreddy, M. Denis, D. Munireddy, R. Pandurangan, K. P. Thangavelu, and K. Venkatesan. (2017). "Cytotoxic effect of Cyperus rotundus rhizome extract on human cancer cell lines". Biomedicine & Pharmacotherapy. 95 : 1375-1387. 10.1016/j.biopha.2017.09.051.

DOI: https://doi.org/10.1016/j.biopha.2017.09.051

[18] S. Susianti, Y. Yanwirasti, E. Darwin, J. Jamsari, and A. Setiawansyah. (2024). "Diterpene alcohol fraction of Cyperus rotundus Linn essential oil regulates Bcl-2 and Bax expression inducing apoptosis on HeLa in vitro and in silico". Journal of Applied Pharmaceutical Science.  10.7324/japs.2024.188231.

DOI: https://doi.org/10.7324/JAPS.2024.188231

[19] S. Kilani-Jaziri, A. Neffati, I. Limem, J. Boubaker, I. Skandrani, M. B. Sghair, I. Bouhlel, W. Bhouri, A. M. Mariotte, K. Ghedira, M. G. Dijoux Franca, and L. Chekir-Ghedira. (2009). "Relationship correlation of antioxidant and antiproliferative capacity of Cyperus rotundus products towards K562 erythroleukemia cells". Chemico-Biological Interactions. 181 (1): 85-94. 10.1016/j.cbi.2009.04.014.

DOI: https://doi.org/10.1016/j.cbi.2009.04.014

[20] A. Setiawansyah, G. Susanti, R. Alrayan, I. Hadi, M. Ikhlas Arsul, D. Luthfiana, L. Wismayani, and N. Hidayati. (2024). "Aaptamine Enhanced Doxorubicin Activity on B-Cell Lymphoma 2 (Bcl-2): A Multi-Structural Molecular Docking Study". Ad-Dawaa' Journal of Pharmaceutical Sciences. 1-10. 10.24252/djps.v7i1.46796.

DOI: https://doi.org/10.24252/djps.v7i1.46796

[21] R. Zhang, X. Zhu, H. Bai, and K. Ning. (2019). "Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment". Frontiers in Pharmacology. 10. 10.3389/fphar.2019.00123.

DOI: https://doi.org/10.3389/fphar.2019.00123

[22] D. Luthfiana, M. Soleha, A. Prasetiyo, W. A. Kusuma, R. Fatriani, L. Nurfadhila, N. Yunitasari, A. H. Ahkam, T. L. Wargasetia, R. Irfandi, A. N. M. Ansori, V. D. Kharisma, S. W. Naw, E. Ullah, V. Jakhmola, and R. Zainul. (2023). "Network pharmacology and molecular docking study to reveal the potential anticancer activity of Oscillatoxin D, E, and F marine cytotoxins". Food systems. 6 (3): 365-389. 10.21323/2618-9771-2023-6-3-365-389.

DOI: https://doi.org/10.21323/2618-9771-2023-6-3-365-389

[23] A. Setiawansyah, A. T. Widiyawati, M. S. D. Sari, M. A. Reynaldi, N. Hidayati, R. Alrayan, and S. A. Nugroho. (2024). "FT-IR-based fingerprint combined with unsupervised chemometric analysis revealed particle sizes and aqueous-ethanol ratio alter the chemical composition and nutraceutical value of Daucus carota". Natural Product Research. 1-9. 10.1080/14786419.2024.2376351.

DOI: https://doi.org/10.1080/14786419.2024.2376351

[24] P. J. D. de Vera, J. C. Tayone, and M. C. S. De Las Llagas. (2022). "Cyperus iria linn. Roots ethanol extract: its phytochemicals, cytotoxicity, and anti-inflammatory activity". Journal of Taibah University for Science. 16 (1): 854-862. 10.1080/16583655.2022.2123088.

DOI: https://doi.org/10.1080/16583655.2022.2123088

[25] N. N. Pavlova and C. B. Thompson. (2016). "The Emerging Hallmarks of Cancer Metabolism". Cell Metabolism. 23 (1): 27-47. 10.1016/j.cmet.2015.12.006.

DOI: https://doi.org/10.1016/j.cmet.2015.12.006

[26] B. Thibault, F. Ramos-Delgado, and J. Guillermet-Guibert. (2023). "Targeting Class I-II-III PI3Ks in Cancer Therapy: Recent Advances in Tumor Biology and Preclinical Research". Cancers (Basel). 15 (3). 10.3390/cancers15030784.

DOI: https://doi.org/10.3390/cancers15030784

[27] R. A. Saxton and D. M. Sabatini. (2017). "mTOR Signaling in Growth, Metabolism, and Disease". Cell. 168 (6): 960-976. 10.1016/j.cell.2017.02.004.

DOI: https://doi.org/10.1016/j.cell.2017.02.004

[28] M. Burotto, V. L. Chiou, J. M. Lee, and E. C. Kohn. (2014). "The MAPK pathway across different malignancies: a new perspective". Cancer. 120 (22): 3446-56. 10.1002/cncr.28864.

DOI: https://doi.org/10.1002/cncr.28864

[29] A. A. Samatar and P. I. Poulikakos. (2014). "Targeting RAS-ERK signalling in cancer: promises and challenges". Nature Reviews Drug Discovery. 13 (12): 928-42. 10.1038/nrd4281.

DOI: https://doi.org/10.1038/nrd4281

[30] K. Taniguchi and M. Karin. (2018). "NF-kappaB, inflammation, immunity and cancer: coming of age". Nature Reviews Immunology. 18 (5): 309-324. 10.1038/nri.2017.142.

DOI: https://doi.org/10.1038/nri.2017.142

[31] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S. Goodsell, and A. J. Olson. (2009). "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility". Journal of Computational Chemistry. 30 (16): 2785-91. 10.1002/jcc.21256.

DOI: https://doi.org/10.1002/jcc.21256

[32] C. Bissantz, B. Kuhn, and M. Stahl. (2010). "A medicinal chemist's guide to molecular interactions". Journal of Medicinal Chemistry. 53 (14): 5061-84. 10.1021/jm100112j.

DOI: https://doi.org/10.1021/jm100112j

[33] S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas, R. A. Smith, B. Schwartz, R. Simantov, and S. Kelley. (2006). "Discovery and development of sorafenib: a multikinase inhibitor for treating cancer". Nature Reviews Drug Discovery. 5 (10): 835-44. 10.1038/nrd2130.

DOI: https://doi.org/10.1038/nrd2130

[34] T. Anastassiadis, S. W. Deacon, K. Devarajan, H. Ma, and J. R. Peterson. (2011). "Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity". Nature Biotechnology. 29 (11): 1039-1045. 10.1038/nbt.2017.

DOI: https://doi.org/10.1038/nbt.2017

[35] R. Barouch-Bentov and K. Sauer. (2011). "Mechanisms of drug resistance in kinases". Expert Opinion on Investigational Drugs. 20 (2): 153-208. 10.1517/13543784.2011.546344.

DOI: https://doi.org/10.1517/13543784.2011.546344

[36] D. Hanahan and R. A. Weinberg. (2011). "Hallmarks of cancer: the next generation". Cell. 144 (5): 646-74. 10.1016/j.cell.2011.02.013.

DOI: https://doi.org/10.1016/j.cell.2011.02.013

[37] D. A. Fruman and C. Rommel. (2014). "PI3K and cancer: lessons, challenges and opportunities". Nature Reviews Drug Discovery. 13 (2): 140-56. 10.1038/nrd4204.

DOI: https://doi.org/10.1038/nrd4204

[38] M. Saleem, M. Nazir, M. S. Ali, H. Hussain, Y. S. Lee, N. Riaz, and A. Jabbar. (2010). "Antimicrobial natural products: an update on future antibioticdrug candidates". Natural Product Reports. 27 (2): 238-254. 10.1039/b916096e.

DOI: https://doi.org/10.1039/B916096E

[39] K. J. Soumaya, M. Dhekra, C. Fadwa, G. Zied, L. Ilef, G. Kamel, and C. G. Leila. (2013). "Pharmacological, antioxidant, genotoxic studies and modulation of rat splenocyte functions by Cyperus rotundus extracts". BMC Complementary Medicine and Therapies. 13 : 28. 10.1186/1472-6882-13-28.

DOI: https://doi.org/10.1186/1472-6882-13-28

[40] A. G. Atanasov, S. B. Zotchev, V. M. Dirsch, T. International Natural Product Sciences, and C. T. Supuran. (2021). "Natural products in drug discovery: advances and opportunities". Nature Reviews Drug Discovery. 20 (3): 200-216. 10.1038/s41573-020-00114-z.

DOI: https://doi.org/10.1038/s41573-020-00114-z

[41] Y. Xu, H. W. Zhang, C. Y. Yu, Y. Lu, Y. Chang, and Z. M. Zou. (2008). "Norcyperone, a novel skeleton norsesquiterpene from Cyperus rotundus L". Molecules. 13 (10): 2474-81. 10.3390/molecules13102474.

DOI: https://doi.org/10.3390/molecules13102474

 

Downloads

Published

2024-10-09

How to Cite

[1]
S. Susianti, “Integrating The Network Pharmacology and Molecular Docking Confirmed with In Vitro Toxicity to Reveal Potential Mechanism of Non–Polar Fraction of Cyperus rotundus Linn as Anti-Cancer Candidate”, J. Multidiscip. Appl. Nat. Sci., vol. 5, no. 1, pp. 56–73, Oct. 2024.

Funding data