Identification of DNA Barcodes from rbcL Chloroplast DNA in Katokkon Chili (Capsicum annuum var. chinense) Origin of Tana Toraja, South Sulawesi
DOI:
https://doi.org/10.47352/jmans.2774-3047.216Keywords:
Capsicum annuum var. chinense, DNA barcode, phylogenetic tree, rbcL, genetic variationAbstract
Katokkon chili (Capsicum annuum var. chinense) is a type of chili which are commonly found in Tana Toraja. It has a distinctive aroma, high spiciness, and a potential economic value but has not been widely identified and explored, thus, it is necessary to carry out molecular identification using DNA barcodes from chloroplast DNA. The aim of this study was to determine genetic variation and the results of constructing a phylogenetic tree from DNA sequences katokkon chili (C. annuum var. chinense) using the rbcL marker. This study used 6 samples of katokkon chilies (C. annuum var. chinense) and 3 outgroup samples (C. frutescens, C. chinense and C. baccatum). The stages of the research included total DNA isolation, qualitative and quantitative tests, PCR amplification using rbcL primers, and sequencing. Data analysis used is sequence alignment, phylogenetic, genetic distance matrix, haplotypes and phylogeography. The results showed genetic variation with 7 polymorphisms consisting of 4 singleton sites at the nucleotide base sequences of 6th, 525, 715 and 737, and 3 parsimony informative sites at the nucleotide base sequences 370, 616 and 902 and the haplotype distribution is divided into 4 haplotypes namely Hap_1 (A1, A2, A3, B1, B2 and B3), Hap_2 (C1), Hap_3 (C2), and Hap_3 (C3). The phylogenetic tree construction formed two clades, namely clade I consist of six samples of katokkon chilies (C. annuum var. chinense) and clade II consisting of three outgroup samples. Mark the highest bootstrap is 96 and the lowest bootstrap value is 29. Genetic distance matrix values are in the range of 0.000–0.005.
References
[1] C. Kusmana and A. Hikmat. (2015). "The Biodiversity of Flora in Indonesia". Journal of Natural Resources and Environmental Management. 5 (2): 187-198. 10.19081/jpsl.5.2.187.
DOI: https://doi.org/10.19081/jpsl.5.2.187[2] A. S. Iryani and A. D. M. Bali. (2021). "Farmer Group of Cabe Bakul (Lada Katokkon) in Rantepao District, North Toraja Regency". Mattawang: Jurnal Pengabdian Masyarakat. 2 (1): 27-35. 10.35877/454RI.mattawang204.
DOI: https://doi.org/10.35877/454RI.mattawang204[3] M. Mutmainnah and M. Masluki. (2017). "The Effect of Giving Organic and Inorganic Fertilizer Types on the growth and production of local Toraja varieties of katokkon chilies". Sustainable Agriculture Journal. 5 : 21-30.
[4] D. Flowrenzhy and N. Harijati. (2017). "Pertumbuhan dan Produktivitas Tanaman Cabai Katokkon (Capsicum chinense Jacq.) di Ketinggian 600 Meter dan 1.200 Meter di atas Permukaan Laut". Biotropika. 5 (2): 44-53. 10.21776/ub.biotropika.2017.005.02.2.
DOI: https://doi.org/10.21776/ub.biotropika.2017.005.02.2[5] M. Virgilio, K. Jordaens, F. C. Breman, T. Backeljau, and M. De Meyer. (2012). "Identifying insects with incomplete DNA barcode libraries, African fruit flies (Diptera: Tephritidae) as a test case". PLoS One. 7 (2): e31581. 10.1371/journal.pone.0031581.
DOI: https://doi.org/10.1371/journal.pone.0031581[6] F. Y. Amandita, K. Rembold, B. Vornam, S. Rahayu, I. Z. Siregar, H. Kreft, and R. Finkeldey. (2019). "DNA barcoding of flowering plants in Sumatra, Indonesia". Ecology and Evolution. 9 (4): 1858-1868. 10.1002/ece3.4875.
DOI: https://doi.org/10.1002/ece3.4875[7] E. Harnelly, Z. Thomy, and N. I. R. Fathiya. (2018). "Phylogenetic analysis of Dipterocarpaceae in Ketambe Research Station, Gunung Leuser National Park (Sumatra, Indonesia) based on rbcL and matK genes". Biodiversitas Journal of Biological Diversity. 19 (3): 1074-1080. 10.13057/biodiv/d190340.
DOI: https://doi.org/10.13057/biodiv/d190340[8] W. Sunaryo. 2015. "Aplikasi DNA Barcoding untuk analisis keragaman genetik lai-durian (Durio zibethinus x kutejensis) asal Kalimantan Timur". presented at the Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 10.13057/psnmbi/m010602.
DOI: https://doi.org/10.13057/psnmbi/m010602[9] A. Gismondi, M. F. Rolfo, D. Leonardi, O. Rickards, and A. Canini. (2012). "Identification of ancient Olea europaea L. and Cornus mas L. seeds by DNA barcoding". Comptes Rendus Biologies. 335 (7): 472-9. 10.1016/j.crvi.2012.05.004.
DOI: https://doi.org/10.1016/j.crvi.2012.05.004[10] S. Ahmed, M. Ibrahim, C. Nantasenamat, M. F. Nisar, A. A. Malik, R. Waheed, M. Z. Ahmed, S. C. Ojha, and M. K. Alam. (2022). "Pragmatic Applications and Universality of DNA Barcoding for Substantial Organisms at Species Level: A Review to Explore a Way Forward". BioMed Research International. 2022 : 1846485. 10.1155/2022/1846485.
DOI: https://doi.org/10.1155/2022/1846485[11] J. Yu, X. Wu, C. Liu, S. Newmaster, S. Ragupathy, and W. J. Kress. (2021). "Progress in the use of DNA barcodes in the identification and classification of medicinal plants". Ecotoxicology and Environmental Safety. 208 : 111691. 10.1016/j.ecoenv.2020.111691.
DOI: https://doi.org/10.1016/j.ecoenv.2020.111691[12] S. Shrestha, F. Asch, J. Dusserre, A. Ramanantsoanirina, and H. Brueck. (2012). "Climate effects on yield components as affected by genotypic responses to variable environmental conditions in upland rice systems at different altitudes". Field Crops Research. 134 : 216-228. 10.1016/j.fcr.2012.06.011.
DOI: https://doi.org/10.1016/j.fcr.2012.06.011[13] N. Kasim, N. D. P. Panggula, F. Haring, F. Ulfa, A. Dachlan, N. Widiayani, and D. Yulsan. (2020). "Growth and production of Katokkon (Capsicum chinense Jacq) chili plants in lowland applied with gibberellins and liquid organic fertilizer". IOP Conference Series: Earth and Environmental Science. 486 (1). 10.1088/1755-1315/486/1/012121.
DOI: https://doi.org/10.1088/1755-1315/486/1/012121[14] D. I. Roslim and A. Fitriani. (2021). "Barkoding DNA pada Tumbuhan Durik-Durik (Syzygium sp.) Asal Riau Menggunakan Daerah Gen ndhF". Jurnal Bios Logos. 11 (1). 10.35799/jbl.11.1.2021.31191.
DOI: https://doi.org/10.35799/jbl.11.1.2021.31191[15] D. A. G. Perwitasari, S. Rohimah, T. Ratnasari, B. Sugiharto, and M. Su'udi. (2020). "DNA Barcoding of Medicinal Orchid Dendrobium discolor Lindl. Tanimbar Using rbcL and ITS genes". Buletin Penelitian Tanaman Rempah dan Obat. 31 (1). 10.21082/bullittro.v31n1.2020.8-20.
DOI: https://doi.org/10.21082/bullittro.v31n1.2020.8-20[16] E. S. Wardi, J. Jamsari, I. Irwandi, D. Sartika, and A. R. Ningsih. (2020). "Barkod Dna Pada Tanaman Gambir (Uncaria Gambir(Hunter) Roxb.) Berdasarkan Gen Matk Dan Rbcl". Jurnal Ilmiah As-Syifaa. 12 (1): 22-28. 10.33096/jifa.v12i1.587.
DOI: https://doi.org/10.33096/jifa.v12i1.587[17] H. Muqaddas, N. Mehmood, and M. Arshad. (2020). "Genetic variability and diversity of Echinococcus granulosus sensu lato in human isolates of Pakistan based on cox1 mt-DNA sequences (366bp)". Acta Tropica. 207. 10.1016/j.actatropica.2020.105470.
DOI: https://doi.org/10.1016/j.actatropica.2020.105470[18] Y. Hong, M. Guo, and J. Wang. (2021). "ENJ algorithm can construct triple phylogenetic trees". Molecular Therapy Nucleic Acids. 23 : 286-293. 10.1016/j.omtn.2020.11.004.
DOI: https://doi.org/10.1016/j.omtn.2020.11.004[19] I. Masruroh, N. Triesita, S. Sulistiono, and A. Santoso. 2018. "Bamboo Kinship Based on the Rbcl Gene Based on In Silico Analysis as Evidence of Molecular Evolution". presented at the Proceedings of the VI National Seminar on Biology.
[20] N. Nursanti, A. A. Adriadi, and S. i. Sai'in. (2022). "Komponen Faktor Abiotik Lingkungan Tempat Tumbuh Puspa (Schima Wallichii Dc. Korth) Di Kawasan Hutan Adat Bulian Kabupaten Musirawas". Jurnal Silva Tropika. 5 (2): 438-445. 10.22437/jsilvtrop.v5i2.14566.
DOI: https://doi.org/10.22437/jsilvtrop.v5i2.14566[21] D. A. Lestari, R. Azrianingsih, and H. Hendrian. (2017). "Taxonomical position of Annonaceae species from East Java, Indonesia: Collections of Purwodadi Botanic Garden based on morphological character". Biodiversitas Journal of Biological Diversity. 18 (3): 1067-1076. 10.13057/biodiv/d180326.
DOI: https://doi.org/10.13057/biodiv/d180326[22] W. J. Kress, L. M. Prince, and K. J. Williams. (2002). "The phylogeny and a new classification of the gingers (Zingiberaceae): evidence from molecular data". American Journal of Botany. 89 (10): 1682-96. 10.3732/ajb.89.10.1682.
DOI: https://doi.org/10.3732/ajb.89.10.1682[23] R. Elfianis, J. Warino, R. Rosmaina, S. Suherman, and Z. Zulfahmi. (2021). "Analisis Kekerabatan Genetik Tanaman Padi (Oryza Sativa L.) Di Kabupaten Kampar Dengan Menggunakan Penanda Random Amplified Polymorphic Dna (Rapd)". Jurnal Agroteknologi. 11 (2). 10.24014/ja.v11i2.10013.
DOI: https://doi.org/10.24014/ja.v11i2.10013[24] R. Ferniah, S. Pujiyanto, and H. P. Kusumaningrum. (2018). "Indonesian red chilli (Capsicum annuum L.) capsaicin and its correlation with their responses to pathogenic Fusarium oxysporum". NICHE Journal of Tropical Biology. 1 (2): 7-12. 10.14710/niche.1.2.7-12.
DOI: https://doi.org/10.14710/niche.1.2.7-12[25] M. Nei. (1972). "Genetic Distance between Populations". The American Naturalist. 106 (949): 283-292. 10.1086/282771.
DOI: https://doi.org/10.1086/282771Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cut Muthiadin, Arma Arma, Isna Rasdianah Aziz, Masriany Masriany, Hajrah Hajrah

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.