Green Synthesis of ZnO Nanoparticles using Abelmoschus esculenthus L. Fruit Extract: Antioxidant, Photoprotective, Anti-inflammatory, and Antibacterial Studies




antioxidant, anti-inflammation, antibacterial, nanoparticle, photoprotection


Nanoparticles are extensively studied for their promising biological properties. In this study, the fruit extract of Abelmoschus esculenthus L. was used as a chelating agent for the synthesis of zinc oxide nanoparticles (ZnOPs-AE) using a zinc acetate solution. The prepared ZnOPs-AE were identified and characterized using UV-vis spectroscopy, Fourier-transformed infrared spectroscopy (FTIR), particle size analyzer (PSA), scanning electron microscopy (SEM), and energy dispersive spectrum (EDS). The green synthesized ZnOPs-AE were evaluated for their antioxidant, photoprotective, anti-inflammatory, and antibacterial activities. The synthesized nanoparticles showed an intensity peak at 370 nm in the UV-vis spectrum. The FTIR result shows the presence of O-H, C=O, C-O, C-OH, and C=C chelating functional groups on the surface of nanoparticles. The size of ZnOPs-AE was determined using a PSA with particle size distribution of 102.2 nm. The ZnOPs-AE were shown to be spherical by SEM analysis and composition was 82.11% and 14.79% for Zn and O, respectively. The antioxidant properties of ZnOPs-AE showed significant antioxidant potential in DPPH, ABTS, and FRAP assays compared to the quercetin standard. The photoprotection activity test showed a SPF value of 19.63, the percentage of erythema transmission was 5.98%,  and the percentage of pigmentation transmission was 5.62%. The ZnOPs-AE showed good anti-inflammatory with the synthesized nanoparticle performing activity between positive control and the fruit extract of Abelmoschus esculenthus L. Also, the ZnOPs-AE exhibited good antibacterial activity against Staphylococcus aureus (20.78 mm) and Pseudomonas aeruginosae (11.13 mm). Overall, the results highlight the effectiveness and potential of ZnOPs-AE for biological application.


[1] M. E. Abdel-Alim, K. Samaan, D. Guillaume, and H. Amla. (2023). "Green Synthesis of Silver Nanoparticles using Egyptian Date Palm (Phoenix dactylifera L.) Seeds and Their Antibacterial Activity Assessment". Bioactivities. 1 (1): 1-8. 10.47352/bioactivities.2963-654X.180.

[2] P. Dikshit, J. Kumar, A. Das, S. Sadhu, S. Sharma, S. Singh, P. Gupta, and B. Kim. (2021). "Green Synthesis of Metallic Nanoparticles: Applications and Limitations". Catalysts. 11 (8). 10.3390/catal11080902.

[3] H. Amrulloh, A. Fatiqin, W. Simanjuntak, H. Afriyani, and A. Annissa. (2021). "Antioxidant and Antibacterial Activities of Magnesium Oxide Nanoparticles Prepared using Aqueous Extract of Moringa Oleifera Bark as Green Agents". Journal of Multidisciplinary Applied Natural Science. 1 (1): 44-53. 10.47352/jmans.v1i1.9.

[4] D. Arumai Selvan, D. Mahendiran, R. Senthil Kumar, and A. Kalilur Rahiman. (2018). "Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies". Journal of Photochemistry and Photobiology B: Biology. 180 : 243-252. 10.1016/j.jphotobiol.2018.02.014.

[5] N. Kahzad and A. Salehzadeh. (2020). "Green Synthesis of CuFe(2)O(4)@Ag Nanocomposite Using the Chlorella vulgaris and Evaluation of its Effect on the Expression of norA Efflux Pump Gene Among Staphylococcus aureus Strains". Biological Trace Element Research. 198 (1): 359-370. 10.1007/s12011-020-02055-5.

[6] M. Khatami, H. Alijani, M. Nejad, and R. Varma. (2018). "Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products". Applied Sciences. 8 (3).  10.3390/app8030411.

[7] R. K. Nath, K. H. Begum, and P. Ahmed. (2020). "Integrated Pest Management of Okra (Abelmoschus esculentus L.)". International Journal of Current Microbiology and Applied Sciences. 9 (1): 1725-1729. 10.20546/ijcmas.2020.901.191.

[8] R. Agregan, M. Pateiro, B. M. Bohrer, M. A. Shariati, A. Nawaz, G. Gohari, and J. M. Lorenzo. (2023). "Biological activity and development of functional foods fortified with okra (Abelmoschus esculentus)". Critical Reviews in Food Science and Nutrition. 63 (23): 6018-6033. 10.1080/10408398.2022.2026874.

[9] J. Yang, X. Chen, S. Rao, Y. Li, Y. Zang, and B. Zhu. (2022). "Identification and Quantification of Flavonoids in Okra (Abelmoschus esculentus L. Moench) and Antiproliferative Activity In Vitro of Four Main Components Identified". Metabolites. 12 (6). 10.3390/metabo12060483.

[10] K. Sak. (2023). "Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication". Bioactivities. 1 (2): 39-42. 10.47352/bioactivities.2963-654X.187.

[11] M. E. S. Sule, E. Astuty, and R. Tahitu. (2023). "In Vitro Antibacterial Activity and Phytochemical Screening of Galoba (Hornstedtia alliaceae) Seeds Extract". Bioactivities. 1 (2): 81-89. 10.47352/bioactivities.2963-654X.196.

[12] A. Muthuvel, M. Jothibas, and C. Manoharan. (2020). "Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity". Journal of Environmental Chemical Engineering. 8 (2). 10.1016/j.jece.2020.103705.

[13] R. Vijayakumar, S. S. Abd Gani, U. H. Zaidan, M. I. E. Halmi, T. Karunakaran, and M. R. Hamdan. (2020). "Exploring the Potential Use of Hylocereus polyrhizus Peels as a Source of Cosmeceutical Sunscreen Agent for Its Antioxidant and Photoprotective Properties". Evidence-Based Complementary and Alternative Medicine. 2020 : 7520736. 10.1155/2020/7520736.

[14] H. Mohd Yusof, R. Mohamad, U. H. Zaidan, and N. A. Abdul Rahman. (2019). "Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review". Journal of Animal Science and Biotechnology. 10 : 57. 10.1186/s40104-019-0368-z.

[15] S. Nur, M. Hanafi, H. Setiawan, and B. Elya. (2022). "In vitro ultra violet (UV) protection of curculigo latifolia extract as a sunscreen candidate". IOP Conference Series: Earth and Environmental Science. 1116 (1). 10.1088/1755-1315/1116/1/012009.

[16] M. S. Paulo, B. Adam, C. Akagwu, I. Akparibo, R. H. Al-Rifai, S. Bazrafshan, F. Gobba, A. C. Green, I. Ivanov, S. Kezic, N. Leppink, T. Loney, A. Modenese, F. Pega, C. E. Peters, A. M. Pruss-Ustun, T. Tenkate, Y. Ujita, M. Wittlich, and S. M. John. (2019). "WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of occupational exposure to solar ultraviolet radiation and of the effect of occupational exposure to solar ultraviolet radiation on melanoma and non-melanoma skin cancer". Environment International. 126 : 804-815. 10.1016/j.envint.2018.09.039.

[17] R. Rahmawati, A. Muflihunna, and M. Amalia. (2018). "Analisis aktivitas perlindungan sinar uv sari buah sirsak (annona muricata l.) berdasarkan nilai Sun Protection Factor (SPF) secara spektrofotometri UV-VIS". Jurnal Fitofarmaka Indonesia. 5 (2): 284-288. 10.33096/jffi.v5i2.412.

[18] O. P. Egambaram, S. Kesavan Pillai, and S. S. Ray. (2020). "Materials Science Challenges in Skin UV Protection: A Review". Photochemistry and Photobiology. 96 (4): 779-797. 10.1111/php.13208.

[19] M. B. Coltelli, S. Danti, K. De Clerck, A. Lazzeri, and P. Morganti. (2020). "Pullulan for Advanced Sustainable Body- and Skin-Contact Applications". Journal of Functional Biomaterials. 11 (1). 10.3390/jfb11010020.

[20] H. Kageyama and R. Waditee-Sirisattha. (2019). "Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging". Marine Drugs. 17 (4). 10.3390/md17040222.

[21] W. Czarnocka and S. Karpinski. (2018). "Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses". Free Radical Biology and Medicine. 122 : 4-20. 10.1016/j.freeradbiomed.2018.01.011.

[22] M. Emanuelli, D. Sartini, E. Molinelli, R. Campagna, V. Pozzi, E. Salvolini, O. Simonetti, A. Campanati, and A. Offidani. (2022). "The Double-Edged Sword of Oxidative Stress in Skin Damage and Melanoma: From Physiopathology to Therapeutical Approaches". Antioxidants (Basel). 11 (4). 10.3390/antiox11040612.

[23] D. Xu, M. J. Hu, Y. Q. Wang, and Y. L. Cui. (2019). "Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application". Molecules. 24 (6). 10.3390/molecules24061123.

[24] K. Nakai and D. Tsuruta. (2021). "What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases?". International Journal of Molecular Sciences. 22 (19). 10.3390/ijms221910799.

[25] S. Weinbaum, L. M. Cancel, B. M. Fu, and J. M. Tarbell. (2021). "The Glycocalyx and Its Role in Vascular Physiology and Vascular Related Diseases". Cardiovascular Engineering and Technology. 12 (1): 37-71. 10.1007/s13239-020-00485-9.

[26] M. G. Tosato, D. E. Orallo, M. F. Fangio, V. Diz, L. E. Dicelio, and M. S. Churio. (2016). In: "Surface Chemistry of Nanobiomaterials". 359-392. 10.1016/b978-0-323-42861-3.00012-1.

[27] A. Aditya, S. Chattopadhyay, N. Gupta, S. Alam, A. P. Veedu, M. Pal, A. Singh, D. Santhiya, K. M. Ansari, and M. Ganguli. (2019). "ZnO Nanoparticles Modified with an Amphipathic Peptide Show Improved Photoprotection in Skin". ACS Applied Materials & Interfaces. 11 (1): 56-72. 10.1021/acsami.8b08431.

[28] D. J. Manasa, K. R. Chandrashekar, M. A. Pavan Kumar, D. Suresh, D. J. Madhu Kumar, C. R. Ravikumar, T. Bhattacharya, and H. C. Ananda Murthy. (2021). "Proficient synthesis of zinc oxide nanoparticles from Tabernaemontana heyneana Wall. via green combustion method: Antioxidant, anti-inflammatory, antidiabetic, anticancer and photocatalytic activities". Results in Chemistry. 310.1016/j.rechem.2021.100178.

[29] A. S. Abdelbaky, T. A. Abd El-Mageed, A. O. Babalghith, S. Selim, and A. Mohamed. (2022). "Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium odoratissimum (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-inflammatory Activities". Antioxidants (Basel). 11 (8). 10.3390/antiox11081444.

[30] S. M. Taghizadeh, N. Lal, A. Ebrahiminezhad, F. Moeini, M. Seifan, Y. Ghasemi, and A. Berenjian. (2020). "Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent". Nanomaterials (Basel). 10 (3). 10.3390/nano10030530.

[31] D. McDaniel, P. Farris, and G. Valacchi. (2018). "Atmospheric skin aging-Contributors and inhibitors". Journal of Cosmetic Dermatology. 17 (2): 124-137. 10.1111/jocd.12518.

[32] C. Astutiningsih. (2022). "Isolation And Inhibition Test Of Quercetin Compound From Okra Fruit (Abelmoschus esculentus L.)". Jurnal Farmasi Sains dan Praktis. 7 (3): 356-364. 10.31603/pharmacy.v7i3.6203.

[33] P. I. Rajan, J. J. Vijaya, S. K. Jesudoss, K. Kaviyarasu, L. J. Kennedy, R. Jothiramalingam, H. A. Al-Lohedan, and M.-A. Vaali-Mohammed. (2017). "Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains". Materials Research Express. 4 (8). 10.1088/2053-1591/aa7e3c.

[34] H. Ou-Yang and R. Rzendzian. (2017). "Sunburn Protection by Sunscreen Sprays at Beach". Cosmetics. 4 (1). 10.3390/cosmetics4010010.

[35] D. Saravanakkumar, S. Sivaranjani, K. Kaviyarasu, A. Ayeshamariam, B. Ravikumar, S. Pandiarajan, C. Veeralakshmi, M. Jayachandran, and M. Maaza. (2018). "Synthesis and characterization of ZnO–CuO nanocomposites powder by modified perfume spray pyrolysis method and its antimicrobial investigation". Journal of Semiconductors. 39 (3). 10.1088/1674-4926/39/3/033001.

[36] Sumaira, M. Siddique Afridi, S. Salman Hashmi, G. S. Ali, M. Zia, and B. Haider Abbasi. (2018). "Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena". IET Nanobiotechnology. 12 (8): 1067-1073. 10.1049/iet-nbt.2018.5076.

[37] S. Azizi, M. B. Ahmad, F. Namvar, and R. Mohamad. (2014). "Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract". Materials Letters. 116 : 275-277. 10.1016/j.matlet.2013.11.038.

[38] S. Azizi, F. Namvar, M. Mahdavi, M. B. Ahmad, and R. Mohamad. (2013). "Biosynthesis of Silver Nanoparticles Using Brown Marine Macroalga, Sargassum Muticum Aqueous Extract". Materials (Basel). 6 (12): 5942-5950. 10.3390/ma6125942.

[39] M. O. Kyene, E. K. Droepenu, F. Ayertey, G. N. Yeboah, M.-A. Archer, D. Kumadoh, S. O. Mintah, P. K. Gordon, and A. A. Appiah. (2023). "Synthesis and characterization of ZnO nanomaterial from Cassia sieberiana and determination of its anti-inflammatory, antioxidant and antimicrobial activities". Scientific African. 1910.1016/j.sciaf.2022.e01452.

[40] A. Ilangovan, A. Venkatramanan, P. Thangarajan, A. Saravanan, S. Rajendran, and K. Kaveri. (2021). "Green Synthesis of Zinc Oxide Nanoparticles (ZnO NPs) using Aqueous Extract of Tagetes Erecta flower and Evaluation of its Antioxidant, Antimicrobial, and Cytotoxic activities on HeLa cell line". Current Biotechnology. 10 (1): 61-76. 10.2174/2211550109999201202123939.

[41] M. Singh, K. E. Lee, R. Vinayagam, and S. G. Kang. (2021). "Antioxidant and Antibacterial Profiling of Pomegranate-pericarp Extract Functionalized-zinc Oxide Nanocomposite". Biotechnology and Bioprocess Engineering. 26 (5): 728-737. 10.1007/s12257-021-0211-1.

[42] M. Spiegel, K. Kapusta, W. Kolodziejczyk, J. Saloni, B. Zbikowska, G. A. Hill, and Z. Sroka. (2020). "Antioxidant Activity of Selected Phenolic Acids-Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features". Molecules. 25 (13). 10.3390/molecules25133088.

[43] T. Suktham, A. Jones, A. Soliven, G. R. Dennis, and R. A. Shalliker. (2019). "A comparison of the performance of the cupric reducing antioxidant potential assay and the ferric reducing antioxidant power assay for the analysis of antioxidants using reaction flow chromatography". Microchemical Journal. 149. 10.1016/j.microc.2019.104046.

[44] F. Y. D. Mutmainah, I. Puspitaningrum, and L. Kusmita. (2020). "Sunscreen activity on fruit skin extract of Annatto (Bixa orellana L.) in vitro". Indian Journal of Science and Technology. 13 (45): 4506-4512. 10.17485/IJST/v13i45.2143.

[45] H. W. Lim, I. Kohli, C. Granger, C. Trullas, J. Piquero-Casals, M. Narda, P. Masson, J. Krutmann, and T. Passeron. (2021). "Photoprotection of the Skin from Visible Light‒Induced Pigmentation: Current Testing Methods and Proposed Harmonization". Journal of Investigative Dermatology. 141 (11): 2569-2576. 10.1016/j.jid.2021.03.012.

[46] T. T. Akhil and P. Prabhu. (2013). "Evaluation of anti-oxidant, anti-inflammatory and cytotoxicity potential of Hemigraphis colorata". International Journal of Pharmaceutical Sciences and Research. 4 (9). 10.13040/ijpsr.0975-8232.4(9).3477-83.

[47] S. Murthuza and B. K. Manjunatha. (2018). "In vitro and in vivo evaluation of anti-inflammatory potency of Mesua ferrea, Saraca asoca, Viscum album & Anthocephalus cadamba in murine macrophages raw 264.7 cell lines and Wistar albino rats". Beni-Suef University Journal of Basic and Applied Sciences. 7 (4): 719-723. 10.1016/j.bjbas.2018.10.001.

[48] S. V. Djova, M. A. Nyegue, A. N. Messi, A. D. Afagnigni, and F. X. Etoa. (2019). "Phytochemical Study of Aqueous Extract of Ochna schweinfurthiana F. Hoffm Powder Bark and Evaluation of Their Anti-Inflammatory, Cytotoxic, and Genotoxic Properties". Evidence-Based Complementary and Alternative Medicine. 2019 : 8908343. 10.1155/2019/8908343.

[49] M. Hamoudi, D. Amroun, A. Baghiani, S. Khennouf, and S. Dahamna. (2021). "Antioxidant, Anti-inflammatory, and Analgesic Activities of Alcoholic Extracts of Ephedra nebrodensis From Eastern Algeria". Turkish Journal Of Pharmaceutical Sciences. 18 (5): 574-580. 10.4274/tjps.galenos.2021.24571.

[50] M. D, K. P, and V. R. Kolli. (2018). "Characterization and antibacterial activity of ZnO nanoparticles synthesized by co-precipitation method". International Journal of Applied Pharmaceutics. 10 (6). 10.22159/ijap.2018v10i6.29376.

[51] I. K. Chukwudozie and I. M. Ezeonu. (2022). "Antimicrobial properties and acute toxicity evaluation of Pycnanthus angolensis stem bark". Scientific African. 1610.1016/j.sciaf.2022.e01185.

[52] M. Nurfatwa. (2018). "Uji Toksisitas Akut Ekstrak Buah Okra (Abelmoschus esculatus L.Moench) Terhadap Parameter Kadar Sgot Dan Sgpt Serta Histopatologi Hepar Tikus Galur Wistar". Journal of Pharmacopolium. 1 (2). 10.36465/jop.v1i2.330.

[53] J. Tandi, B. Melinda, A. Purwantari, and A. Widodo. (2020). "Analisis Kualitatif dan Kuantitatif Metabolit Sekunder Ekstrak Etanol Buah Okra (Abelmoschus esculentus L. Moench) dengan Metode Spektrofotometri UV-Vis". KOVALEN: Jurnal Riset Kimia. 6 (1): 74-80. 10.22487/kovalen.2020.v6.i1.15044.

[54] W. Chen, T. Li, X. Yan, X. Wu, Y. Zhang, X. Wang, F. Zhang, S. Zhang, and G. He. (2021). "Constructing ionic channels in anion exchange membrane via a Zn2+ soft template: Experiment and molecular dynamics simulation". Journal of Membrane Science. 629. 10.1016/j.memsci.2021.119293.

[55] K. M. Ezealisiji, X. Siwe-Noundou, B. Maduelosi, N. Nwachukwu, and R. W. M. Krause. (2019). "Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats". International Nano Letters. 9 (2): 99-107. 10.1007/s40089-018-0263-1.

[56] S. Faisal, H. Jan, S. A. Shah, S. Shah, A. Khan, M. T. Akbar, M. Rizwan, F. Jan, Wajidullah, N. Akhtar, A. Khattak, and S. Syed. (2021). "Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications". ACS Omega. 6 (14): 9709-9722. 10.1021/acsomega.1c00310.

[57] S. Fakhari, M. Jamzad, and H. Kabiri Fard. (2019). "Green synthesis of zinc oxide nanoparticles: a comparison". Green Chemistry Letters and Reviews. 12 (1): 19-24. 10.1080/17518253.2018.1547925.

[58] Farhana, M. F. H. Munis, K. H. Alamer, A. T. Althobaiti, A. Kamal, F. Liaquat, U. Haroon, J. Ahmed, H. J. Chaudhary, and H. Attia. (2022). "ZnO Nanoparticle-Mediated Seed Priming Induces Biochemical and Antioxidant Changes in Chickpea to Alleviate Fusarium Wilt". Journal of Fungi. 8 (7). 10.3390/jof8070753.

[59] G. S. Mei, P. S. Menon, and G. Hegde. (2020). "ZnO for performance enhancement of surface plasmon resonance biosensor: a review". Materials Research Express. 7 (1).  10.1088/2053-1591/ab66a7.

[60] Y. Bouramdane, S. Fellak, F. El Mansouri, and A. Boukir. (2022). "Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD)". Fermentation. 8 (12). 10.3390/fermentation8120698.

[61] A. Maimulyanti, I. Nurhidayati, B. Mellisani, F. Amelia Rachmawati Putri, F. Puspita, and A. Restu Prihadi. (2023). "Development of natural deep eutectic solvent (NADES) based on choline chloride as a green solvent to extract phenolic compound from coffee husk waste". Arabian Journal of Chemistry. 16 (4).  10.1016/j.arabjc.2023.104634.

[62] S. S. K, V. Vellora Thekkae Padil, C. Senan, R. Pilankatta, S. K, B. George, S. Waclawek, and M. Cernik. (2018). "Green Synthesis of High Temperature Stable Anatase Titanium Dioxide Nanoparticles Using Gum Kondagogu: Characterization and Solar Driven Photocatalytic Degradation of Organic Dye". Nanomaterials (Basel). 8 (12). 10.3390/nano8121002.

[63] N. Saridewi, H. T. Syaputro, I. Aziz, D. Dasumiati, and B. N. Kumila. (2021). "Synthesis and characterization of ZnO nanoparticles using pumpkin seed extract (Cucurbita moschata) by the sol-gel method". the 4th International Seminar on Chemistry. 10.1063/5.0051826.

[64] G. Gong, Y. Zhang, and H. Zheng. (2022). "Extraction and characterization of coal-based fulvic acid from Inner Mongolia lignite by hydrogen peroxide-glacial acetic acid". Chemical Papers. 76 (3): 1665-1674. 10.1007/s11696-021-01986-0.

[65] R. Khan, M. Inam, M. Iqbal, M. Shoaib, D. Park, K. Lee, S. Shin, S. Khan, and I. Yeom. (2018). "Removal of ZnO Nanoparticles from Natural Waters by Coagulation-Flocculation Process: Influence of Surfactant Type on Aggregation, Dissolution and Colloidal Stability". Sustainability. 11 (1). 10.3390/su11010017.

[66] Z. Eskandari, F. Bahadori, B. Celik, and H. Onyuksel. (2020). "Targeted Nanomedicines for Cancer Therapy, From Basics to Clinical Trials". Journal of Pharmacy & Pharmaceutical Sciences. 23 (1): 132-157. 10.18433/jpps30583.

[67] C. Mendez Torrecillas, G. W. Halbert, and D. A. Lamprou. (2017). "A novel methodology to study polymodal particle size distributions produced during continuous wet granulation". International Journal of Pharmaceutics. 519 (1-2): 230-239. 10.1016/j.ijpharm.2017.01.023.

[68] M. Nasrollahzadeh and S. M. Sajadi. (2015). "Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability". Ceramics International. 41 (10): 14435-14439. 10.1016/j.ceramint.2015.07.079.

[69] M. Sathishkumar, K. Sneha, I. S. Kwak, J. Mao, S. J. Tripathy, and Y. S. Yun. (2009). "Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract". Journal of Hazardous Materials. 171 (1-3): 400-4. 10.1016/j.jhazmat.2009.06.014.

[70] V. Sharma and P. Janmeda. (2017). "Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves". Arabian Journal of Chemistry. 10 (4): 509-514. 10.1016/j.arabjc.2014.08.019.

[71] U. R. Shwetha, M. S. Latha, C. R. Rajith Kumar, M. S. Kiran, and V. S. Betageri. (2020). "Facile Synthesis of Zinc Oxide Nanoparticles Using Novel Areca catechu Leaves Extract and Their In Vitro Antidiabetic and Anticancer Studies". Journal of Inorganic and Organometallic Polymers and Materials. 30 (12): 4876-4883. 10.1007/s10904-020-01575-w.

[72] O. Chongsrimsirisakhol and T. Pirak. (2022). "Total polyphenol content and antioxidant properties of cold brew coffee extracts as affected by ultrasound treatment and their application in low fat pork sausage". International Journal of Food Properties. 25 (1): 813-826. 10.1080/10942912.2022.2056197.

[73] V. Areekul and W. Krungkri. (2019). "Effect of Heating Condition and pH on Stability of Total Phenolic Content and Antioxidant Activities of Samui (Micromelum minutum) Extract". the Proceedings of the 16th ASEAN Food Conference. 10.5220/0009980801260132.

[74] A. M. Espinosa-Gonzalez, E. A. Estrella-Parra, E. Nolasco-Ontiveros, A. M. Garcia-Bores, R. Garcia-Hernandez, E. Lopez-Urrutia, J. E. Campos-Contreras, M. D. R. Gonzalez-Valle, J. D. C. Benitez-Flores, C. L. Cespedes-Acuna, J. Alarcon-Enos, J. C. Rivera-Cabrera, and J. G. Avila-Acevedo. (2021). "Hyptis mociniana: phytochemical fingerprint and photochemoprotective effect against UV-B radiation-induced erythema and skin carcinogenesis". Food and Chemical Toxicology. 151 : 112095. 10.1016/j.fct.2021.112095.

[75] R. Pandel, B. Poljsak, A. Godic, and R. Dahmane. (2013). "Skin photoaging and the role of antioxidants in its prevention". ISRN Dermatology. 2013 : 930164. 10.1155/2013/930164.

[76] S. Gonzalez, J. Aguilera, B. Berman, P. Calzavara-Pinton, Y. Gilaberte, C. L. Goh, H. W. Lim, S. Schalka, F. Stengel, P. Wolf, and F. Xiang. (2022). "Expert Recommendations on the Evaluation of Sunscreen Efficacy and the Beneficial Role of Non-filtering Ingredients". Frontiers in Medicine. 9 : 790207. 10.3389/fmed.2022.790207.

[77] J. A. Mojeski, M. Almashali, P. Jowdy, M. E. Fitzgerald, K. L. Brady, N. C. Zeitouni, O. R. Colegio, and G. Paragh. (2020). "Ultraviolet imaging in dermatology". Photodiagnosis and Photodynamic Therapy. 30 : 101743. 10.1016/j.pdpdt.2020.101743.

[78] M. Athiyah, I. Ahmad, and L. Rijai. (2015). "Aktivitas Tabir Surya Ekstrak Akar Bandotan (Ageratum Conyzoides L.)". Jurnal Sains dan Kesehatan. 1 (4): 181-187. 10.25026/jsk.v1i4.37.

[79] C. Antoniou, M. G. Kosmadaki, A. J. Stratigos, and A. D. Katsambas. (2008). "Sunscreens – what's important to know". Journal of the European Academy of Dermatology and Venereology. 22 (9): 1110-1119. 10.1111/j.1468-3083.2007.02580.x.

[80] U. Bhattacharya, A. Hackethal, S. Kaesler, B. Loos, and S. Meyer. (2012). "Is Unbiased Financial Advice to Retail Investors Sufficient? Answers from a Large Field Study". Review of Financial Studies. 25 (4): 975-1032. 10.1093/rfs/hhr127.

[81] M. Mueller, S. Hobiger, and A. Jungbauer. (2010). "Anti-inflammatory activity of extracts from fruits, herbs and spices". Food Chemistry. 122 (4): 987-996. 10.1016/j.foodchem.2010.03.041.

[82] A. Khakpour, N. A. Shadmehri, H. Amrulloh, and H. Kioumarsi. (2023). "Antibacterial Effect of Juglans regia, Citrus sinensis, Vicia faba, and Urtica urens Extracts under In vitro Conditions". Bioactivities. 1 (2): 74-80. 10.47352/bioactivities.2963-654X.195.

[83] K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, and A. Punnoose. (2007). "Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems". Applied Physics Letters. 90 (213902): 2139021-2139023. 10.1063/1.2742324.

[84] M. Godoy-Gallardo, U. Eckhard, L. M. Delgado, Y. J. D. de Roo Puente, M. Hoyos-Nogues, F. J. Gil, and R. A. Perez. (2021). "Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications". Bioactive Materials. 6 (12): 4470-4490. 10.1016/j.bioactmat.2021.04.033.

[85] Y. Hong, J. Zeng, X. Wang, K. Drlica, and X. Zhao. (2019). "Post-stress bacterial cell death mediated by reactive oxygen species". Proceedings of the National Academy of Sciences. 116 (20): 10064-10071. 10.1073/pnas.1901730116.

[86] K. Khorsandi, S. Keyvani-Ghamsari, F. Khatibi Shahidi, R. Hosseinzadeh, and S. Kanwal. (2021). "A mechanistic perspective on targeting bacterial drug resistance with nanoparticles". Journal of Drug Targeting. 29 (9): 941-959. 10.1080/1061186X.2021.1895818.

[87] T. P. Lestari, F. A. Tahlib, J. Sukweenadhi, K. Kartini, and C. Avanti. (2019). "Physical Characteristic and Antibacterial Activity of Silver Nanoparticles from Green Synthesis Using Ethanol Extracts of Phaleria macrocarpa (Scheff.) Boerl Leaves". Majalah Obat Tradisional. 24 (1). 10.22146/mot.37956.

[88] T. Naseem and M. A. Farrukh. (2015). "Antibacterial Activity of Green Synthesis of Iron Nanoparticles UsingLawsonia inermisandGardenia jasminoidesLeaves Extract". Journal of Chemistry. 2015 : 1-7. 10.1155/2015/912342.




How to Cite

C. Astutiningsih, T. E. Rahmawati, N. A. Rahman, and M. Meri, “Green Synthesis of ZnO Nanoparticles using Abelmoschus esculenthus L. Fruit Extract: Antioxidant, Photoprotective, Anti-inflammatory, and Antibacterial Studies”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 176-193, Jan. 2024.