Characterization of Extracellular Chitinase from Bacillus cereus SAHA 12.13 and Its Potency as a Biocontrol of Curvularia affinis

Authors

  • Muhammad Asril Department of Biology, Institut Teknologi Sumatera (ITERA), Lampung Selatan, Lampung-35365 (Indonesia); Microbiology Study Program, Department of Biology, IPB University, Bogor, West Java-16680 (Indonesia) https://orcid.org/0000-0001-8637-4190
  • Didik Supriyadi Department of Chemical Engineering, Institut Teknologi Sumatera (ITERA), Lampung Selatan, Lampung-35365 (Indonesia) https://orcid.org/0000-0002-5228-5197

DOI:

https://doi.org/10.47352/jmans.2774-3047.203

Keywords:

Bacillus cereus, characterization, chitinase, Curvularia affinis, environmental factors, natural resource

Abstract

Bacillus cereus SAHA 12.13 can produce chitinase, an enzyme that digests chitin in the main compounds of cell walls, mycelia, and spores in pathogenic fungi that cause leaf spots on oil palm plants such as Curvularia affinis. This study aims to determine the properties of the chitinase enzyme B. cereus SAHA 12.13 that can inhibit the growth of C. affinis. Chitinase enzyme production and characterization were measured using the Spindler method. Antagonism test against pathogenic fungi using dual culture method by testing cell culture and enzyme crude extract. This result showed that the isolate produced a high level of specific chitinase activity at 37 °C for 45 h of incubation with 8.45 U mg-1 proteins with a growth rate (k) of 0.25 generation/h, and the generation time was 3.96 h/generation. The optimum chitinase activity was achieved at pH 7.0 and 45 °C and was stable for 3 h with a half-life (t1/2) of 770 min. The crude enzyme and cell culture of strain can inhibit the growth of C. affinis by 36.27±0.043% and 34.25±0.041%, respectively. These characteristics indicate that B. cereus strain SAHA12.13 can be used to inhibit C. affinis, which causes leaf blight of oil palm, under varying pH and temperature conditions.

References

[1] E. Z. Gomaa. (2012). "Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol". Journal of Microbiology. 50 (1): 103-11. https://doi.org/10.1007/s12275-012-1343-y.

[2] S. Banerjee and N. C. Mandal. (2019). In: "Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications, ch. Chapter 18". 457-491. https://doi.org/10.1007/978-981-13-8487-5_18.

[3] M. Ikeda, K. Miyauchi, A. Mochizuki, and M. Matsumiya. (2009). "Purification and characterization of chitinase from the stomach of silver croaker Pennahia argentatus". Protein Expression and Purification. 65 (2): 214-22. https://doi.org/10.1016/j.pep.2009.01.015.

[4] N. Jayanthi, M. G. M. Purwanto, R. Chrisnasari, T. Pantjajani, A. Wahjudi, and M. Sugiarto. (2019). "Characterization of thermostable chitinase from Bacillus licheniformis B2". IOP Conference Series: Earth and Environmental Science. 293 (1).  https://doi.org/10.1088/1755-1315/293/1/012030.

[5] M. Mubarik. (2010). "Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Its Application as Biocontrol for Whitefly (<i>Bemisia tabaci</i> Genn.)". American Journal of Agricultural and Biological Sciences. 5 (4): 430-435. https://doi.org/10.3844/ajabssp.2010.430.435.

[6] E. Morales-Ruiz, R. Priego-Rivera, A. M. Figueroa-Lopez, J. E. Cazares-Alvarez, and I. E. Maldonado-Mendoza. (2021). "Biochemical characterization of two chitinases from Bacillus cereus sensu lato B25 with antifungal activity against Fusarium verticillioides P03". FEMS Microbiology Letters. 368 (2).  https://doi.org/10.1093/femsle/fnaa218.

[7] A. Kumar and G. Dukariya. (2020). "Chitinase Production from Locally Isolated Bacillus cereus GS02 from Chitinous Waste Enriched Soil". Journal of Advances in Biology & Biotechnology. 39-48. https://doi.org/10.9734/jabb/2020/v23i130137.

[8] N. Thakur, A. K. Nath, A. Chauhan, and R. Gupta. (2022). "Purification, characterization, and antifungal activity of Bacillus cereus strain NK91 chitinase from rhizospheric soil samples of Himachal Pradesh, India". Biotechnology and Applied Biochemistry. 69 (5): 1830-1842. https://doi.org/10.1002/bab.2250.

[9] A. M. Figueroa-Lopez, K. Y. Leyva-Madrigal, R. G. Cervantes-Gamez, L. I. Beltran-Arredondo, N. R. Douriet-Gamez, C. Castro-Martinez, and I. E. Maldonado-Mendoza. (2017). "Induction of Bacillus cereus chitinases as a response to lysates of Fusarium verticillioides". Romanian Biotechnological Letters. 22 (4): 12722-31.

[10] C. S. Devi, V. M. Srinivasan, B. Archana, S. S. Roy, and S. J. Naine. (2015). "Production and partial purification of antifungal chitinase from Bacillus cereus VITSD3". Bioscience Journal. 31 (3): 960-968. https://doi.org/10.14393/BJ-v31n3a2015-26263.

[11] E. Kurniawan, S. Panphon, and M. Leelakriangsak. (2019). "Potential of marine chitinolyticBacillusisolates as biocontrol agents of phytopathogenic fungi". IOP Conference Series: Earth and Environmental Science. 217https://doi.org/10.1088/1755-1315/217/1/012044.

[12] R. Marlin and M. Asril. (2022). "Inhibition of Bilimbi Leaf Extract (Averrhoa bilimbi Linn.) Against the Growth of Candida albicans ATCC 10231". Jurnal Biota. 8 (1): 39-46. https://doi.org/10.19109/Biota.v8i1.9554.

[13] A. Rostami, K. Hinc, F. Goshadrou, A. Shali, M. Bayat, M. Hassanzadeh, M. Amanlou, N. Eslahi, and G. Ahmadian. (2017). "Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide". Pesticide Biochemistry and Physiology. 140 : 17-23. https://doi.org/10.1016/j.pestbp.2017.05.008.

[14] N. Dahiya, R. Tewari, and G. S. Hoondal. (2006). "Biotechnological aspects of chitinolytic enzymes: a review". Applied Microbiology and Biotechnology. 71 (6): 773-82. https://doi.org/10.1007/s00253-005-0183-7.

[15] S. Dwi. (2012). "A possibility of chitinolytic bacteria utilization to control basal stems disease caused by Ganoderma boninense in oil palm seedling". African Journal of Microbiology Research. 6 (9). https://doi.org/10.5897/ajmr11.1343.

[16] B. F. Azadeh, M. Sariah, and M. Y. Wong. (2012). "Characterization of Burkholderia cepacia genomovar I as a potential biocontrol agent of Ganoderma boninense in oil palm". African Journal of Biotechnology. 9 (24): 3542-3548. https://doi.org/10.4314/ajb.v9i24.

[17] N. R. Mubarik, M. Asril, and A. T. Wahyudi. (2014). "Partial Purification of Bacterial Chitinase as Biocontrol of Leaf Blight Disease on Oil Palm". Research Journal of Microbiology. 9 (6): 265-277. https://doi.org/10.3923/jm.2014.265.277.

[18] R. Dewi, N. Mubarik, and M. Suhartono. (2016). "Medium optimization of beta-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen". Emirates Journal of Food and Agriculture.28 (2).  https://doi.org/10.9755/ejfa.2015-05-195.

[19] Y. S. Kurniawan, T. Indriani, H. Amrulloh, L. C. Adi, A. C. Imawan, K. T. A. Priyangga, and E. Yudha. (2023). "Journey of Natural Products: From Isolation Stage to Drug’s Approval in Clinical Trials". Bioactivities. 1 (2): 43-60. https://doi.org/10.47352/bioactivities.2963-654X.190.

[20] K. Sak. (2023). "Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication". Bioactivities. 1 (2): 39-42. https://doi.org/10.47352/bioactivities.2963-654X.187.

[21] J. Kittimorak, C. Pornsuriya, A. Sunpapao, and V. Petcharat. (2013). "Survey and Incidence of Leaf Blight and Leaf Spot Diseases of Oil Palm Seedlings in Southern Thailand". Plant Pathology Journal. 12 (3): 149-153. https://doi.org/10.3923/ppj.2013.149.153.

[22] Suwandi, S. Akino, and N. Kondo. (2012). "Common Spear Rot of Oil Palm in Indonesia". Plant Disease. 96 (4): 537-543. https://doi.org/10.1094/PDIS-08-10-0569.

[23] A. Haryanto, N. R. Mubarik, and S. Listiyowati. (2013). "Isolation of Chitinolytic Bacteria Used as Biological Control of Suspected Pathogenic Fungi on Oil palm Seedlings". Undergraduate Thesis. IPB University, Bogor.

[24] F. Widdel. (2010). "Theory and Measurement of Bacterial Growth". Grundpraktikum Mikrobiologie.

[25] K. Spindler. (1997). In: " P. Jollès and R. A. A. Muzzarelli (Eds) Chitin Handbook". Alda Tecnografica, Boston.

[26] M. M. Bradford. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding". Analytical Biochemistry. 72 : 248-54. https://doi.org/10.1006/abio.1976.9999.

[27] N. J. Fokkema. (1973). "The rôle of saprophytic fungi in antagonism against Drechslera sorokiniana (Helminthosporium sativum) on agar plates and on rye leaves with pollen". Physiological Plant Pathology. 3 (2): 195-205. https://doi.org/10.1016/0048-4059(73)90082-9.

[28] H. Natsir, A. R. Patong, M. T. Suhartono, and A. Ahmad. (2010). "Oduction And Characterization Of Chitinase Enzymes From Sulili Hot Spring In South Sulawesi, <i>Bacillus</i> sp. HSA,3-1a". Indonesian Journal of Chemistry. 10 (2): 256-260. https://doi.org/10.22146/ijc.21470.

[29] T. Taechowisan, J. Peberdy, and S. Lumyong. (2003). "Chitinase production by endophytic Streptomyces aureofaciens CMUAc130 and its antagonism against phytopathogenic fungi". Annals of Microbiology. 53 : 447-461.

[30] M. Dliyauddin, T. Ardyati, and S. Suharjono. (2020). "Evaluation of Proteolytic and Chitinolytic Activities of Indigenous Bacillus Speciesfrom Crab Shell Waste". The Journal of Experimental Life Sciences. 10 (1): 1-5. https://doi.org/10.21776/ub.jels.2019.010.01.01.

[31] N. Herdyastuti, F. Fauziah, R. Widodo, Y. Prabowo, I. Apriliana, and S. Cahyaningrum. (2021). "Diversity of Chitinolytic Bacteria from Shrimp Farms and Their Antifungal Activity". Journal of Natural Science, Biology and Medicine. 12 (3): 317-324.

[32] A. N. Idris, S. S. Tang, and A. F. Mohd Adnan. (2021). "Study of Thermostable Chitinase Isolated and Purified from Oryctes rhinoceros Larvae Gut". Sains Malaysiana. 50 (2): 339-349. https://doi.org/10.17576/jsm-2021-5002-06.

[33] A. Alhasawi and V. D. Appanna. (2017). "Enhanced extracellular chitinase production in <em>Pseudomonas fluorescens</em>: biotechnological implications". AIMS Bioengineering. 4 (3): 366-375. https://doi.org/10.3934/bioeng.2017.3.366.

[34] N. Nurdebyandaru, N. Rachmania Mubarik, and T. Sri Prawasti. (2010). "Chitinolytic Bacteria Isolated from Chili Rhizosphere: Chitinase Characterization and Application as Biocontrol for Aphis gossypii". Microbiology Indonesia. 4 (3): 103-107. https://doi.org/10.5454/mi.4.3.1.

[35] S. Sudha, P. Sharon, K. Yadav, and R. Priyanka. (2020). "Optimization of Chitinase Production from Lake Sediment Inhabitant Bacillus thuringiensis Strain LS1 and Bacillus cereus Strain LS2". Asian Journal of Pharmaceutics. 14 (2): 175-182. https://doi.org/10.22377/AJP.V14I2.3611.

[36] W. M. Haggag and E. Abdallh. (2012). "Purification and Characterization of Chitinase Produced by Endophytic <i>St</i><i>re</i><i>ptomyceshygroscopicus</i><i> </i>Against Some Phytopathogens". Journal of Microbiology Research. 2 (5): 145-151. https://doi.org/10.5923/j.microbiology.20120205.06.

[37] S. Margino, C. Behar, and W. Asmara. (2012). "Isolation and Purification of Chitinase Bacillus sp. D2 Isolated from Potato Rhizosfer". Indonesian Journal of Biotechnology. 17 (1): 69-78. https://doi.org/10.22146/IJBIOTECH.7851.

[38] M. S. Brzezinska, U. Jankiewicz, and M. Walczak. (2013). "Biodegradation of chitinous substances and chitinase production by the soil actinomycete Streptomyces rimosus". International Biodeterioration & Biodegradation. 84: 104-110. https://doi.org/10.1016/j.ibiod.2012.05.038.

[39] N. Harini, Y. X. Han, and J. Sukweenadhi. (2021). "The Role of Calcium Ions to Improve Activity of Chitinase Isolated from Vibrio sp". Jordan Journal of Biological Sciences. 14 (05): 925-931. https://doi.org/10.54319/jjbs/140507.

[40] K. Subramanian, B. Sadaiappan, W. Aruni, A. Kumarappan, R. Thirunavukarasu, G. P. Srinivasan, S. Bharathi, P. Nainangu, P. S. Renuga, A. Elamaran, D. Balaraman, and M. Subramanian. (2020). "Bioconversion of chitin and concomitant production of chitinase and N-acetylglucosamine by novel Achromobacter xylosoxidans isolated from shrimp waste disposal area". Scientific Reports. 10 (1): 11898. https://doi.org/10.1038/s41598-020-68772-y.

[41] N. Karthik, P. Binod, and A. Pandey. (2015). "Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp". Bioresource Technology. 188 : 195-201. https://doi.org/10.1016/j.biortech.2015.03.006.

[42] J. Du, S. Duan, J. Miao, M. Zhai, and Y. Cao. (2021). "Purification and characterization of chitinase from Paenibacillus sp". Biotechnology and Applied Biochemistry. 68 (1): 30-40. https://doi.org/10.1002/bab.1889.

[43] B. A. Cheba, T. I. Zaghloul, A. R. El-Mahdy, and M. H. El-Massry. (2016). "Effect of pH and Temperature on Bacillus sp. R2 Chitinase Activity and Stability". Procedia Technology. 22 : 471-477. https://doi.org/10.1016/j.protcy.2016.01.092.

[44] K. Liu, H. Ding, Y. Yu, and B. Chen. (2019). "A Cold-Adapted Chitinase-Producing Bacterium from Antarctica and Its Potential in Biocontrol of Plant Pathogenic Fungi". Marine Drugs. 17 (12). https://doi.org/10.3390/md17120695.

[45] S. Y. Lee, H. Tindwa, Y. S. Lee, K. W. Naing, S. H. Hong, Y. Nam, and K. Y. Kim. (2012). "Biocontrol of anthracnose in pepper using chitinase, beta-1,3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224". Journal of Microbiology and Biotechnology. 22 (10): 1359-66.https://doi.org/10.4014/jmb.1203.02056.

[46] N. D. Putri, L. Sulistyowati, L. Q. Aini, A. Muhibuddin, and I. Trianti. (2022). "Screening of endophytic fungi as potential antagonistic agents of Pyricularia oryzae and evaluation of their ability in producing hydrolytic enzymes". Biodiversitas Journal of Biological Diversity. 23 (2). https://doi.org/10.13057/biodiv/d230248.

[47] T. Lanisnik Rizner and M. H. Wheeler. (2003). "Melanin biosynthesis in the fungus Curvularia lunata (teleomorph: Cochliobolus lunatus)". Canadian Journal of Microbiology. 49 (2): 110-9. https://doi.org/10.1139/w03-016.

[48] M. J. Beltran-Garcia, F. M. Prado, M. S. Oliveira, D. Ortiz-Mendoza, A. C. Scalfo, A. Pessoa, Jr., M. H. Medeiros, J. F. White, and P. Di Mascio. (2014). "Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas". PLoS One. 9 (3): e91616. https://doi.org/10.1371/journal.pone.0091616.

[49] I. Geoghegan, G. Steinberg, and S. Gurr. (2017). "The Role of the Fungal Cell Wall in the Infection of Plants". Trends in Microbiology. 25 (12): 957-967. https://doi.org/10.1016/j.tim.2017.05.015.

[50] N. Ludwig, M. Lohrer, M. Hempel, S. Mathea, I. Schliebner, M. Menzel, A. Kiesow, U. Schaffrath, H. B. Deising, and R. Horbach. (2014). "Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola". Molecular Plant-Microbe Interactions. 27 (4): 315-27. https://doi.org/10.1094/MPMI-09-13-0267-R.

[51] R. Ramachandran, A. G. Chalasani, R. Lal, and U. Roy. (2014). "A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1". Scientific World Journal. 2014 : 968487. https://doi.org/10.1155/2014/968487.

[52] S. Atalla, N. E. Gamal, and H. Awad. (2020). "Chitinase of Marine Penicillium chrysogenum MH745129: Isolation, Identification, Production and Characterization as Controller for Citrus Fruits Postharvest Pathogens". Jordan Journal of Biological Sciences. 13 (1): 19-28.

Downloads

Published

2024-01-20

How to Cite

[1]
M. Asril and D. Supriyadi, “Characterization of Extracellular Chitinase from Bacillus cereus SAHA 12.13 and Its Potency as a Biocontrol of Curvularia affinis”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 165-175, Jan. 2024.