Application of Response Surface Methodology (RSM) to Study Transesterification of Palm Oil in the Presence of Zeolite-A as Catalyst

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.201

Keywords:

palm oil, transesterification, biodiesel, zeolite-A, RSM

Abstract

In this research, the application of response surface methodology with central composite design (RSM-CCD) to optimizetransesterification of palm oil in the presence of zeolite-A as catalyst was investigated. Zeolite-A was synthesized from rice husk silica (RHS) and food-grade aluminium foil using hydrothermal method and then characterized using XRD and SEM. The synthesized zeolite was then applied to an optimized transesterification reaction using response RSM with three factorial levels, for three variables including methanol to oil ratio, catalyst load, and reaction time. The experimental results indicate that the yield of 99% was achieved at optimum conditions of methanol to oil volume ratio of 6, catalyst load of 9.6%, and reaction time of 4.3 hours. The results of experiments and predicted results based on the RSM model are in agreement as shown by the p-value less than 0.05 at a confidence level of 95%.

References

[1] J. Prameswari, W. Widayat, L. Buchori, and H. Hadiyanto. (2023). "Novel iron sand-derived alpha-Fe(2)O(3)/CaO(2) bifunctional catalyst for waste cooking oil-based biodiesel production". Environmental Science and Pollution Research. 30 (44): 98832-98847. 10.1007/s11356-022-21942-z.

[2] R. Djayasinga, A. Setiawan, A. Purnomo, A. Z. Amien, and H. Hartanti. (2022). "Utilization of Breed Chicken Eggshells for Biodiesel Preparation from Waste Cooking Oil". Journal of Multidisciplinary Applied Natural Science. 2 (1): 41-46. 10.47352/jmans.2774-3047.90.

[3] K. D. Pandiangan, W. Simanjuntak, R. Supriyanto, I. Ilim, P. Prasetyo, and S. Hadi. (2020). "Production of Magnesium Oxides from Raw Salt Solution Using Electrochemical Precipitation Method as a Heterogeneous Catalyst for Transesterification of Coconut Oil". Revista de Chimie. 71 (8): 148-158. 10.37358/rc.20.8.8289.

[4] K. D. Pandiangan, W. Simanjuntak, D. I. Alista, and I. Ilim. (2021). "The Effect of NiO Loads on Catalytic Activity of Nio/ZSM-5 for Transesterification of Rubber Seed Oil". Rasayan Journal of Chemistry. 14 (04): 2379-2385. 10.31788/rjc.2021.1446286.

[5] K. D. Pandiangan, W. Simanjuntak, S. Hadi, I. Ilim, and H. Amrulloh. (2021). "Physical characteristics and utilization of ZSM-5 prepared from rice husk silica and aluminum hydroxide as catalyst for transesterification of Ricinus communis oil". Materials Research Express. 8 (6). 10.1088/2053-1591/ac0365.

[6] A. F. Panichikkal, P. Prakasan, U. Kizhakkepowathial Nair, and M. Kulangara Valappil. (2018). "Optimization of parameters for the production of biodiesel from rubber seed oil using onsite lipase by response surface methodology". 3 Biotech. 8 (11): 459. 10.1007/s13205-018-1477-7.

[7] G. F. Silva, F. L. Camargo, and A. L. O. Ferreira. (2011). "Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol". Fuel Processing Technology. 92 (3): 407-413. 10.1016/j.fuproc.2010.10.002.

[8] Y. S. Erchamo, T. T. Mamo, G. A. Workneh, and Y. S. Mekonnen. (2021). "Improved biodiesel production from waste cooking oil with mixed methanol-ethanol using enhanced eggshell-derived CaO nano-catalyst". Scientific Reports. 11 (1): 6708. 10.1038/s41598-021-86062-z.

[9] H. Rasouli and H. Esmaeili. (2019). "Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterification process". 3 Biotech. 9 (11): 429. 10.1007/s13205-019-1963-6.

[10] N. Chumuang and V. Punsuvon. (2017). "Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent". Journal of Chemistry. 2017 : 1-9. 10.1155/2017/4190818.

[11] M.-C. Hsiao, S.-S. Hou, J.-Y. Kuo, and P.-H. Hsieh. (2018). "Optimized Conversion of Waste Cooking Oil to Biodiesel Using Calcium Methoxide as Catalyst under Homogenizer System Conditions". Energies. 11 (10). 10.3390/en11102622.

[12] W. Widayat, N. T. Maheswari, W. Fitriani, L. Buchori, H. Satriadi, K. Kusmiyati, and N. Ngadi. (2023). "Preparation of MgO-CaO/SiO2 catalyst from dolomite and geothermal solid waste for biodiesel production". International Journal of Renewable Energy Development. 12 (3): 541-549. 10.14710/ijred.2023.51573.

[13] T. Rahimi, D. Kahrizi, M. Feyzi, H. R. Ahmadvandi, and M. Mostafaei. (2021). "Catalytic performance of MgO /Fe2O3-SiO2 core-shell magnetic nanocatalyst for biodiesel production of Camelina sativa seed oil: Optimization by RSM-CCD method". Industrial Crops and Products. 159. 10.1016/j.indcrop.2020.113065.

[14] K. D. Pandiangan, W. Simanjuntak, S. Hadi, I. Ilim, D. I. Alista, and D. A. Sinaga. (2023). "Study on the Reaction Parameters on Transesterification of Rubber Seed Oil Using MgO/zeolite-A Catalyst". Trends in Sciences. 20 (8). 10.48048/tis.2023.6480.

[15] G. Chen, R. Shan, S. Li, and J. Shi. (2015). "A biomimetic silicification approach to synthesize CaO–SiO 2 catalyst for the transesterification of palm oil into biodiesel". Fuel. 153 : 48-55. 10.1016/j.fuel.2015.02.109.

[16] Herliana, Ilim, W. Simanjuntak, and K. D. Pandiangan. (2021). "Transesterification of coconut oil (Cocos nucifera L.) into biodiesel using zeolite-A catalyst based on rice husk silica and aluminum foil". Journal of Physics: Conference Series. 1751 (1). 10.1088/1742-6596/1751/1/012091.

[17] K. D. Pandiangan, S. Arief, N. Jamarun, and W. Simanjuntak. (2017). "Synthesis of zeolite-X from rice husk silica and aluminum metal as a catalyst for transesterification of palm oil". Journal of Materials and Environmental Science. 8 (5): 1797-1802.

[18] H. Abdul-Kader, Z. Shakor, B. Al-Zaidi, S. Al-Humairi, and M. Salihu. (2023). "Production of High-Efficiency Alternative Biodiesel from Transesterification of Waste Cooking Oil Using an In-house Made Y-Type Zeolite Catalyst". Engineering and Technology Journal. 41 (9): 1-18. 10.30684/etj.2023.141766.1513.

[19] M. Hashemzehi, V. Pirouzfar, H. Nayebzadeh, and C. H. Su. (2021). "Modelling and optimization of main independent parameters for biodiesel production over a Cu0.4Zn0.6Al2O4 catalyst using an RSM method". Journal of Chemical Technology & Biotechnology. 97 (1): 111-119. 10.1002/jctb.6916.

[20] E. E. Jasper, J. C. Onwuka, and E. B. Agbaji. (2022). "Chemical Regeneration of A Dye-Laden Activated Carbon: Optimization via The Box-Behnken Experimental Design". Journal of Multidisciplinary Applied Natural Science.3 (1): 43-54. 10.47352/jmans.2774-3047.144.

[21] L. R. V. d. Conceição, C. E. F. d. Costa, G. N. d. Rocha Filho, E. R. Pereira-Filho, and J. R. Zamian. (2015). "Ethanolysis Optimisation of Jupati (Raphia taedigera Mart.) Oil to Biodiesel Using Response Surface Methodology". Journal of the Brazilian Chemical Society. 10.5935/0103-5053.20150097.

[22] M. G. Nayak and A. P. Vyas. (2019). "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology". Renewable Energy. 138 18-28. 10.1016/j.renene.2019.01.054.

[23] V. Singh, L. Belova, B. Singh, and Y. C. Sharma. (2018). "Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM)". Energy Conversion and Management. 174 198-207. 10.1016/j.enconman.2018.08.029.

[24] N. F. Sulaiman, W. A. Wan Abu Bakar, S. Toemen, N. M. Kamal, and R. Nadarajan. (2019). "In depth investigation of bi-functional, Cu/Zn/γ-Al2O3 catalyst in biodiesel production from low-grade cooking oil: Optimization using response surface methodology". Renewable Energy. 135 : 408-416. 10.1016/j.renene.2018.11.111.

[25] W. Simanjuntak, K. D. Pandiangan, Z. Sembiring, A. Simanjuntak, and S. Hadi. (2021). "The effect of crystallization time on structure, microstructure, and catalytic activity of zeolite-A synthesized from rice husk silica and food-grade aluminum foil". Biomass and Bioenergy. 148. 10.1016/j.biombioe.2021.106050.

[26] Y. C. Wong, Y. P. Tan, Y. H. Taufiq-Yap, and I. Ramli. (2015). "An Optimization Study for Transesterification of Palm Oil using Response Surface Methodology (RSM)". Sains Malaysiana. 44 (2): 281-290. 10.17576/jsm-2015-4402-17.

[27] A. Bayat, M. Baghdadi, and G. N. Bidhendi. (2018). "Tailored magnetic nano-alumina as an efficient catalyst for transesterification of waste cooking oil: Optimization of biodiesel production using response surface methodology". Energy Conversion and Management. 177 : 395-405. 10.1016/j.enconman.2018.09.086.

[28] B. O. Yusuf, S. A. Oladepo, and S. A. Ganiyu. (2023). "Biodiesel Production from Waste Cooking Oil via beta-Zeolite-Supported Sulfated Metal Oxide Catalyst Systems". ACS Omega. 8 (26): 23720-23732. 10.1021/acsomega.3c01892.

[29] L. Fereidooni, M. Enayati, and A. Abbaspourrad. (2020). "Purification technology for renewable production of fuel from methanolysis of waste sunflower oil in the presence of high silica zeolite beta". Green Chemistry Letters and Reviews. 14 (1): 2-14. 10.1080/17518253.2020.1856426.

[30] H. Rahman, J. P. Sitompul, and S. Tjokrodiningrat. (2022). "The composition of fatty acids in several vegetable oils from Indonesia". Biodiversitas Journal of Biological Diversity. 23 (4). 10.13057/biodiv/d230452.

[31] B. Tay, Y. Ping, and M. Yusof. (2009). "Characteristics and properties of fatty acid distillates from palm oil". Oil Palm Bulletin. 59 : 5-11.

[32] M. Koushki, M. Nahidi, and F. Cheraghali. (2015). "Physico-chemical properties, fatty acid profile and nutrition in palm oil". Archives of Advances in Biosciences. 6 (3): 117-134.

Downloads

Published

2023-12-19

How to Cite

[1]
K. D. Pandiangan, K. Nisa, W. Simanjuntak, D. I. Alista, E. Noviana, and S. A. Hasan, “Application of Response Surface Methodology (RSM) to Study Transesterification of Palm Oil in the Presence of Zeolite-A as Catalyst”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 146-157, Dec. 2023.