Green Chemistry Influences in Organic Synthesis : a Review

Authors

DOI:

https://doi.org/10.47352/jmans.v1i1.2

Keywords:

environmental sustainability, green chemistry, organic compound, synthesis process

Abstract

Environmental pollution and global warming cause serious problems in human life. Since the demand for our human daily appliances had been increased by years, the organic chemical-based industries response that demand increment by increasing their production process. Because of that, the environmental pollution becomes worse and worse. Green chemistry thus was introduced to influence the chemical industries to strive for better environmental sustainability. Over 20 years, green chemistry principles have to influence the organic chemistry field especially as many researchers have put their attention on that field of research. So far, synthesis process involving organic compounds has been considered on waste prevention, safer solvents, design for high energy efficiency, and usage of renewable feedstocks. This review comprehensively discusses in brief about the implementation of green chemistry principle and their applications in the synthesis process of organic compounds.

References

[1] B. A. de Marco, B. S. Rechelo, E. G. Tótoli, A. C. Kogawa, and H. R. N. Salgado. (2019). “Evolution of green chemistry and its multidimensional impacts: A review”. Saudi Pharmaceutical Journal. 27 (1): 1–8. 10.1016/j.jsps.2018.07.011.

[2] S. K. Singh, D. N. Rao, M. Agrawal, J. Pandey, and D. Naryan. (1991). “Air pollution tolerance index of plants”. Journal of Environmental Management. 32 (1): 45–55, 1991, doi: 10.1016/S0301-4797(05)80080-5.

[3] C. J. Li and B. M. Trost. (2008). “Green chemistry for chemical synthesis”. Proceedings of the National Academy of Sciences of the United States of America. 105 (36): 13197–13202. 10.1073/pnas.0804348105.

[4] J. B. Manley, P. T. Anastas, and B. W. Cue. (2008). “Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing”. Journal of Cleaner Production. 16 (6): 743–750. 10.1016/j.jclepro.2007.02.025.

[5] M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, and P. T. Anastas. (2002). “Green chemistry: Science and politics of change”. Science. 297 (5582): 807–810. 10.1126/science.297.5582.807.

[6] M. J. Mulvihill, E. S. Beach, J. B. Zimmerman, and P. T. Anastas. (2011). “Green chemistry and green engineering: A framework for sustainable technology development”. Annual Review of Environment and Resources. 36: 271–293. 10.1146/annurev-environ-032009-095500.

[7] J. A. Linthorst. (2010). “An overview: Origins and development of green chemistry”. Foundations of Chemistry. 12 (1): 55–68. 10.1007/s10698-009-9079-4.

[8] P. Anastas and N. Eghbali. (2020). “Green Chemistry: Principles and Practise”. Chemical Society Reviews. 29: 301–12. 10.1039/b918763b.

[9] L. Giusti. (2009). “A review of waste management practices and their impact on human health”. Waste Management. 29 (8): 2227–2239. 10.1016/j.wasman.2009.03.028.

[10] C. Brown, M. Milke, and E. Seville. (2011). “Disaster waste management: A review article”. Waste Management. 31 (6): 1085–1098. 10.1016/j.wasman.2011.01.027.

[11] M. Tobiszewski, M. Marć, A. Gałuszka, and J. Namies̈nik. (2015). “Green chemistry metrics with special reference to green analytical chemistry”. Molecules. 20 (6): 10928–10946. 10.3390/molecules200610928.

[12] T. Hudlicky, D. A. Frey, L. Koroniak, C. D. Claeboe, and L. E. Brammer Jr. (1999). “Toward a ‘reagent-free’ synthesis”. Green Chemistry. 1 (2): 57–59. 10.1039/a901397k.

[13] B. M. Trost. (1995). “Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way”. Angewandte Chemie International Edition in English. 34 (3): 259–281. 10.1002/anie.199502591.

[14] K. van Aken, L. Strekowski, and L. Patiny. (2006). “EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters”. Beilstein Journal of Organic Chemistry. 2. 10.1186/1860-5397-2-3.

[15] R. A. Sheldon. (2007). “The E Factor: Fifteen years on”. Green Chemistry. 9 (12): 1273–1283. 10.1039/b713736m.

[16] Y. Lie, P. Ortiz, R. Vendamme, K. Vanbroekhoven, and T. J. Farmer. (2019). “BioLogicTool: A Simple Visual Tool for Assisting in the Logical Selection of Pathways from Biomass to Products”. Industrial and Engineering Chemistry Research. 58 (35): 15945–15957. 10.1021/acs.iecr.9b00575.

[17] Y. S. Kurniawan, M. Anwar, and T. D. Wahyuningsih. (2017). “New lubricant from used cooking oil: Cyclic ketal of ethyl 9,10-dihydroxyoctadecanoate”. Materials Science Forum. 901: 135–141. 10.4028/www.scientific.net/MSF.901.135.

[18] J. Jumina, Y. Priastomo, H. R. Setiawan, Mutmainah, Y. S. Kurniawan and K. Ohto. (2020). “Simultaneous removal of lead(II), chromium(III) and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4] pyrogallolarene material”. Journal of Environmental Chemical Engineering. 8: 103971. 10.1016/j.jece.2020.103971.

[19] L. G. C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K. E. Taylor and N. Biswas. (2016). “A Short Review of Techniques for Phenol Removal from Wastewater”. Current Pollution Reports. 2 (3): 157–167. 10.1007/s40726-016-0035-3.

[20] Y. S. Kurniawan, K. Anggraeni, R. Indrawati, and L. Yuliati. (2020). “Functionalization of titanium dioxide through dye sensitizing method utilizing red amaranth extract for phenol photodegradation”. IOP Conference Series: Materials Science and Engineering.

[21] D. Ariyanti, D. Iswantini, P. Sugita, N. Nurhidayat, and Y. S. Kurniawan. (2020). “Highly Sensitive Phenol Biosensor Utilizing Selected Bacillus Biofilm Through an Electrochemical Method”. Makara Journal of Science. 24 (1). 10.7454/mss.v24i1.11726.

[22] M. M. Khan, S. F. Adil, and A. Al-Mayouf. (2015). “Metal oxides as photocatalysts”. Journal of Saudi Chemical Society. 19 (5): 462–464. 10.1016/j.jscs.2015.04.003.

[23] A. Loupy. (2017). “Solvent-Free Microwave Organic Synthesis as an Efficient Procedure for Green Chemistry”. ChemInform. 36 (10). 10.1002/chin.200510294.

[24] M. Vian, C. Breil, L. Vernes, E. Chaabani, and F. Chemat. (2017). “Green solvents for sample preparation in analytical chemistry”. Current Opinion in Green and Sustainable Chemistry. 5: 44–48. 10.1016/j.cogsc.2017.03.010.

[25] P. J. Walsh, H. Li, and C. Anaya de Parrodi. (2007). “A Green Chemistry Approach to Asymmetric Catalysis: Solvent-Free and Highly Concentrated Reactions”. ChemInform. 38 (36). 10.1002/chin.200736264.

[26] I. Pacheco-Fernández and V. Pino. (2019). “Green solvents in analytical chemistry”. Current Opinion in Green and Sustainable Chemistry. 18: 42–50. 10.1016/j.cogsc.2018.12.010.

[27] F. P. Byrne, S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. Robert McElroy, J. Sherwood. (2016). “Tools and techniques for solvent selection: green solvent selection guides”. Sustainable Chemical Processes. 4 (1). 10.1186/s40508-016-0051-z.

[28] C. Jiménez-Gonzalez, A. D. Curzons, D. J. C. Constable, and V. L. Cunningham. (2004). “Expanding GSK’s Solvent Selection Guide - Application of life cycle assessment to enhance solvent selections”. Clean Technologies and Environmental Policy. 7 (1): 42–50. 10.1007/s10098-004-0245-z.

[29] A. Duereh, Y. Sato, R. L. Smith, and H. Inomata. (2017). “Methodology for replacing dipolar aprotic solvents used in API processing with safe hydrogen-bond donor and acceptor solvent-pair mixtures”. Organic Process Research and Development. 21 (1): 114–124. 10.1021/acs.oprd.6b00401.

[30] R. Schlögl. (2016). “Sustainable Energy Systems: The Strategic Role of Chemical Energy Conversion”. Topics in Catalysis. 59 (8): 772–786. 10.1007/s11244-016-0551-9.

[31] J. Jumina, H. R. Setiawan, S. Triono, Y. S. Kurniawan, Y. Priastomo. (2020). “C -Arylcalix[4]pyrogallolarene Sulfonic Acid: A Novel and Efficient Organocatalyst Material for Biodiesel Production”. Bulletin of the Chemical Society of Japan. 93 (2): 252–259. 10.1246/bcsj.20190275.

[32] G. J. Hutchings. (2007). “A golden future for green chemistry”. Catalysis Today. 122 (3): 196–200. 10.1016/j.cattod.2007.01.018.

[33] P. A. Deyris and C. Grison. (2018). “Nature, ecology and chemistry: An unusual combination for a new green catalysis, ecocatalysis”. Current Opinion in Green and Sustainable Chemistry. 10: 6–10. 10.1016/j.cogsc.2018.02.002.

[34] G. Chatel. (2018). “How sonochemistry contributes to green chemistry?”. Ultrasonics Sonochemistry. 40: 117–122. 10.1016/j.ultsonch.2017.03.029.

[35] Díaz-Ortiz, P. Prieto, and A. de la Hoz. (2019). “A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis”. Chemical Record. 19 (1): 85–97. 10.1002/tcr.201800059.

[36] F. Mavandadi and Å. Pilotti. (2006). “The impact of microwave-assisted organic synthesis in drug discovery”. Drug Discovery Today. 11 (3): 165–174. 10.1016/S1359-6446(05)03695-0.

[37] M. Oelgemöller and N. Hoffmann. (2016). “Studies in organic and physical photochemistry-an interdisciplinary approach”. Organic and Biomolecular Chemistry. 14 (31): 7392–7442. 10.1039/c6ob00842a.

[38] H. Trommsdorff. (1834). “Ueber Santonin”. Annalen der Pharmacie. 11 (2): 190–207. 10.1002/jlac.18340110207.

[39] J. M. Herrmann, C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachheb, E. Puzenat, C. Guillard. (2007). “Environmental green chemistry as defined by photocatalysis,” Journal of Hazardous Materials. 146 (3): 624–629. 10.1016/j.jhazmat.2007.04.095.

[40] Y. S. Kurniawan, A. C. Imawan, S. R. Rao, K. Ohto, W. Iwasaki, M. Miyazaki and J. Jumina. (2019). “Microfluidics era in chemistry field: A review”. Journal of the Indonesian Chemical Society. 2 (1): 7-23. 10.34311/jics.2019.02.1.7.

[41] Y.S. Kurniawan, R. R. Sathuluri, and K. Ohto. (2020). “Droplet microfluidic device for rapid and efficient metal separation using host-guest chemistry”. In Advances in Microfluidic Technologies for Energy and Environmental Applications. IntechOpen. 10.5772/intechopen.89846.

[42] J. I. Yoshida, H. Kim, and A. Nagaki. (2011). “Green and sustainable chemical synthesis using flow microreactors”. ChemSusChem. 4 (3): 331–340. 10.1002/cssc.201000271.

[43] J. I. Yoshida, H. Kim, and A. Nagaki. (2017). “‘Impossible’ Chemistries Based on Flow and Micro”. Journal of Flow Chemistry. 7 (3): 60–64. 10.1556/1846.2017.00017.

[44] H. Kim, A. Nagaki, and J. I. Yoshida. (2011). “A flow-microreactor approach to protecting-group-free synthesis using organolithium compounds”. Nature Communications. 2 (1). 10.1038/ncomms1264.

[45] A. C. Imawan, Y. S. Kurniawan, M. F. Lukman, Jumina, Triyono, and D. Siswanta. (2018). “Synthesis and kinetic study of the urea controlled release composite material: Sodium lignosulfonate from isolation of wood sawdust-sodium Alginate-Tapioca”. Indonesian Journal of Chemistry. 18 (1): 108–115. 10.22146/ijc.26597.

[46] J. Jumina, Y. Yasodhara, S. Triono, Y. S. Kurniawan, Y. Priastomo, H. M. Chawla, and N. Kumar. (2021). “Preparation and evaluation of α-cellulose based new heterogenous catalyst for production of biodiesel”. Journal of Applied Polymer Science. 138 (2): 49658. 10.1002/app.49658.

[47] J. Yan, X. Pan, Z. Wang, Z. Lu, Y. Wang, L. Liu, J. Zhang, C. Ho, M. R. Bockstaller, K. Matyjaszewski. (2017). “A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization”. Chemistry of Materials. 29 (11): 4963–4969. 10.1021/acs.chemmater.7b01338.

[48] R. A. Sheldon. (2016). “Green chemistry, catalysis and valorization of waste biomass”. Journal of Molecular Catalysis A: Chemical. 422: 3–12. 10.1016/j.molcata.2016.01.013.

[49] F. J. Lozano, R. Lozano, P. Freire, C. Jiménez-Gonzalez, T. Sakao, M. G. Ortiz, A. Trianni, A. Carpenter, T. Viveros. (2018). “New perspectives for green and sustainable chemistry and engineering: Approaches from sustainable resource and energy use, management, and transformation”. Journal of Cleaner Production. 172: 227–232. 10.1016/j.jclepro.2017.10.145.

[50] T. D. Wahyuningsih and Y. S. Kurniawan. (2017). “Green synthesis of some novel dioxolane compounds from Indonesian essential oils as potential biogreases”. AIP Conference Proceedings. 1823. 10.1063/1.4978154.

[51] Y. S. Kurniawan, Y. Ramanda, K. Thomas, Hendra, and T. D. Wahyuningsih. (2017). “Synthesis of 1,4-dioxaspiro[4.4] and 1,4-dioxaspiro[4.5] novel compounds from oleic acid as potential biolubricant”. Indonesian Journal of Chemistry. 17 (2): 301–308. 10.22146/ijc.24891.

[52] T. D. Wahyuningsih and Y.S. Kurniawan. (2020). “Synthesis of dioxo-dioxane and dioxo-dioxepane ethyl oleate derivatives as bio-lubricant base stocks”. Indonesian Journal of Chemistry. 20 (3): 504-509. 10.22146/ijc.42317.

[53] T. D. Wahyuningsih, Y. S. Kurniawan, S. Amalia, T. A. K. Wardhani, and C. E. S. Muriningsih. (2019). “Diethanolamide derivatives as a potential enhanced oil recovery agent from indonesian castor oil and used frying oil: Isolation, synthesis, and evaluation as nonionic biosurfactants”. Rasayan Journal of Chemistry. 12 (2): 741–748. 10.31788/RJC.2019.1225140.

Downloads

Published

2021-01-07

How to Cite

[1]
Y. S. . Kurniawan, K. T. A. Priyangga, P. A. Krisbiantoro, and A. C. Imawan, “Green Chemistry Influences in Organic Synthesis : a Review”, J. Multidiscip. Appl. Nat. Sci., vol. 1, no. 1, pp. 1-12, Jan. 2021.