Advancing Green Nanotechnology: Harnessing the Bio-reducing Properties of Musa paradisiaca Peel Extract for Sustainable Synthesis of Iron Oxide Nanoparticles

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.194

Keywords:

Iron oxide, nanoparticles, green approach, Musa paradisiaca peel

Abstract

A green synthesis method utilizing Musa paradisiaca peel extract as a reducing and stabilizing agent was employed to produce iron oxide nanoparticles. The synthesized nanoparticles were extensively characterized using FTIR, XRD, DLS, SEM, EDX, and TEM techniques. FTIR analysis confirmed the presence of iron metal and functional groups derived from the peel extract. XRD results indicated the presence of magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) phases, signifying a high degree of crystallinity. DLS analysis provided valuable insights into the size distribution and polydispersity of the nanoparticles, revealing an average particle diameter of 43.35 nm and a polydispersity index of 0.612. SEM examination uncovered the presence of aggregated formations, where irregularly shaped nanoparticles exhibited either close packing or loose association, resulting in the formation of larger aggregates. These environmentally friendly iron oxide nanoparticles could potentially hold great promise for a variety of biological applications, including the potential for drug delivery and antimicrobial applications.

References

[1] M. R. Ahghari, V. Soltaninejad, and A. Maleki. (2020). "Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities". Scientific Reports. 10 (1): 12627. 10.1038/s41598-020-69679-4.

[2] I. H. Ifijen, E. U. Ikhuoria, S. O. Omorogbe, B. Anegbe, E. M. Jonathan, and D. I. Chikaodili. (2023). "Chemical, plant and microbial mediated synthesis of tin oxide nanoparticles: antimicrobial and anticancer potency". Brazilian Journal of Chemical Engineering. 10.1007/s43153-023-00315-0.

[3] M. Maliki, I. H. Ifijen, E. U. Ikhuoria, E. M. Jonathan, G. E. Onaiwu, U. D. Archibong, and A. Ighodaro. (2022). "Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties". International Nano Letters. 12 (4): 379-398. 10.1007/s40089-022-00380-2.

[4] S. Lakshminarayanan, M. F. Shereen, K. L. Niraimathi, P. Brindha, and A. Arumugam. (2021). "One-pot green synthesis of iron oxide nanoparticles from Bauhinia tomentosa: Characterization and application towards synthesis of 1, 3 diolein". Scientific Reports. 11 (1): 8643. 10.1038/s41598-021-87960-y.

[5] M. E. Abdel-Alim, K. Samaan, D. Guillaume, and H. Amla. (2023). "Green Synthesis of Silver Nanoparticles using Egyptian Date Palm (Phoenix dactylifera L.) Seeds and Their Antibacterial Activity Assessment". Bioactivities. 1 (1): 1-8. 10.47352/bioactivities.2963-654X.180.

[6] I. H. Ifijen, E. U. Ikhuoria, S. O. Omorogbe, G. O. Otabor, A. I. Aigbodion, and S. D. Ibrahim. (2023). In: " TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, (The Minerals, Metals & Materials Series, ch. Chapter 30. ". 327-336. 10.1007/978-3-031-22524-6_30.

[7] E. U. Ikhuoria, S. O. Omorogbe, B. T. Sone, and M. Maaza. (2018). "Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract". Science and Technology of Materials. 30 (2): 92-98. 10.1016/j.stmat.2018.02.003.

[8] S. O. Omorogbe, A. I. Aigbodion, H. I. Ifijen, A. Simo, N. L. Ogbeide-Ihama, and E. U. Ikhuoria. (2020). In: " TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, (The Minerals, Metals & Materials Series, ch. Chapter 58. ". 619-631. 10.1007/978-3-030-36296-6_58.

[9] S. O. Omorogbe, E. U. Ikhuoria, L. I. Igiehon, G. O. Agbonlahor, I. H. Ifijen, and A. I. Aigbodion. (2017). "Characterization of sulphated cellulose nanocrystals as stabilizer for magnetite nanoparticles synthesis with improved magnetic properties". Nigerian Journal of Materials Science and Engineering. 7 (2): 23-31.

[10] M. G. Montiel Schneider, M. J. Martin, J. Otarola, E. Vakarelska, V. Simeonov, V. Lassalle, and M. Nedyalkova. (2022). "Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives". Pharmaceutics. 14 (1):  10.3390/pharmaceutics14010204.

[11] A. M. Negrescu, M. S. Killian, S. N. V. Raghu, P. Schmuki, A. Mazare, and A. Cimpean. (2022). "Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects". Journal of Functional Biomaterials.13 (4):  10.3390/jfb13040274.

[12] I. H. Ifijen, N. U. Udokpoh, M. Maliki, E. U. Ikhuoria, and E. O. Obazee. (2023). In: " TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, (The Minerals, Metals & Materials Series, ch. Chapter 59. ". 665-674. 10.1007/978-3-031-22524-6_59.

[13] K. E. Mokobia, I. H. Ifijen, and E. U. Ikhuoria. (2023). In: " TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, (The Minerals, Metals & Materials Series, ch. Chapter 27. ". 288-300. 10.1007/978-3-031-22524-6_27.

[14] I. H. Ifijen, M. Maliki, I. J. Odiachi, I. C. Omoruyi, A. I. Aigbodion, and E. U. Ikhuoria. (2022). "Performance of Metallic-Based Nanomaterials Doped with Strontium in Biomedical and Supercapacitor Electrodes: A Review". Biomedical Materials & Devices.  10.1007/s44174-022-00006-3.

[15] K. S. Ganesh, A. Sridhar, and S. Vishali. (2022). "Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review". Chemosphere. 287 (Pt 3): 132221. 10.1016/j.chemosphere.2021.132221.

[16] J. R. Peralta-Videa, Y. Huang, J. G. Parsons, L. Zhao, L. Lopez-Moreno, J. A. Hernandez-Viezcas, and J. L. Gardea-Torresdey. (2016). "Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?". Nanotechnology for Environmental Engineering. 1 (1). 10.1007/s41204-016-0004-5.

[17] R. Suhag, R. Kumar, A. Dhiman, A. Sharma, P. K. Prabhakar, K. Gopalakrishnan, R. Kumar, and A. Singh. (2023). "Fruit peel bioactives, valorisation into nanoparticles and potential applications: A review". Critical Reviews in Food Science and Nutrition 63 (24): 6757-6776. 10.1080/10408398.2022.2043237.

[18] A. Mohamed, R. R. Atta, A. A. Kotp, F. I. Abo El-Ela, H. Abd El-Raheem, A. Farghali, D. H. M. Alkhalifah, W. N. Hozzein, and R. Mahmoud. (2023). "Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd(2+) and Ni(2+)) from aqueous solutions with Antimicrobial Investigation". Scientific Reports. 13 (1): 7227. 10.1038/s41598-023-31704-7.

[19] N. Ndou, T. Rakgotho, M. Nkuna, I. Z. Doumbia, T. Mulaudzi, and R. F. Ajayi. (2023). "Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress". Plants (Basel). 12 (7). 10.3390/plants12071425.

[20] C. Harmansah, M. Karatay Kutman, and F. Z. Biber Muftuler. (2022). "Preparation of iron oxide nanoparticles by banana peels extract and its usage in NDT". Measurement. 204  10.1016/j.measurement.2022.112081.

[21] K. G. Akpomie and J. Conradie. (2020). "Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye". Arabian Journal of Chemistry. 13 (9): 7115-7131. 10.1016/j.arabjc.2020.07.017.

[22] D. Tungmunnithum, A. Thongboonyou, A. Pholboon, and A. Yangsabai. (2018). "Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview". Medicines (Basel). 5(3).  10.3390/medicines5030093.

[23] S. A. Shodehinde and G. Oboh. (2013). "Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro". Asian Pacific Journal of Tropical Biomedicine. 3 (6): 449-57. 10.1016/S2221-1691(13)60095-7.

[24] V. P. Aswathi, S. Meera, C. G. A. Maria, and M. Nidhin. (2022). "Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review". Nanotechnology for Environmental Engineering. 8 (2): 377-397. 10.1007/s41204-022-00276-8.

[25] A. M. E. Shafey. (2020). "Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review". Green Processing and Synthesis. 9 (1): 304-339. 10.1515/gps-2020-0031.

[26] C. Pechyen, K. Ponsanti, B. Tangnorawich, and N. Ngernyuang. (2022). "Biogenic synthesis of gold nanoparticles mediated by Spondias dulcis (Anacardiaceae) peel extract and its cytotoxic activity in human breast cancer cell". Toxicology Reports. 9 : 1092-1098. 10.1016/j.toxrep.2022.04.031.

[27] H. Kumar, K. Bhardwaj, D. S. Dhanjal, E. Nepovimova, F. Sen, H. Regassa, R. Singh, R. Verma, V. Kumar, D. Kumar, S. K. Bhatia, and K. Kuca. (2020). "Fruit Extract Mediated Green Synthesis of Metallic Nanoparticles: A New Avenue in Pomology Applications". International Journal of Molecular Sciences. 21 (22).  10.3390/ijms21228458.

[28] L. Guerrini, R. A. Alvarez-Puebla, and N. Pazos-Perez. (2018). "Surface Modifications of Nanoparticles for Stability in Biological Fluids". Materials (Basel). 11 (7).  10.3390/ma11071154.

[29] R. Javed, M. Zia, S. Naz, S. O. Aisida, N. U. Ain, and Q. Ao. (2020). "Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects". Journal of Nanobiotechnology. 18 (1): 172. 10.1186/s12951-020-00704-4.

[30] A. Naganthran, G. Verasoundarapandian, F. E. Khalid, M. J. Masarudin, A. Zulkharnain, N. M. Nawawi, M. Karim, C. A. Che Abdullah, and S. A. Ahmad. (2022). "Synthesis, Characterization and Biomedical Application of Silver Nanoparticles". Materials (Basel). 15 (2). 10.3390/ma15020427.

[31] A. Walter, A. Garofalo, A. Parat, H. Martinez, D. Felder-Flesch, and S. Begin-Colin. (2015). "Functionalization strategies and dendronization of iron oxide nanoparticles". Nanotechnology Reviews. 4 (6). 10.1515/ntrev-2015-0014.

[32] P. Karuppiah and M. Mustaffa. (2013). "Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection". Asian Pacific Journal of Tropical Biomedicine. 3 (9): 737-42. 10.1016/S2221-1691(13)60148-3.

[33] P. Plachtova, Z. Medrikova, R. Zboril, J. Tucek, R. S. Varma, and B. Marsalek. (2018). "Iron and Iron Oxide Nanoparticles Synthesized Using Green Tea Extract: Improved Ecotoxicological Profile and Ability to Degrade Malachite Green". ACS Sustainable Chemistry & Engineering. 6 : 8679-8687. 10.1021/acssuschemeng.8b00986.

[34] S. Rajendran, S. G. Wanale, A. Gacem, V. K. Yadav, I. A. Ahmed, J. S. Algethami, S. D. Kakodiya, T. Modi, A. M. Alsuhaibani, K. K. Yadav, and S. Cavalu. (2023). "Nanostructured Iron Oxides: Structural, Optical, Magnetic, and Adsorption Characteristics for Cleaning Industrial Effluents". Crystals. 13 (3). 10.3390/cryst13030472.

[35] A. Rajan, M. Sharma, and N. K. Sahu. (2020). "Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe(3)O(4) nanoparticles for hyperthermia". Scientific Reports. 10 (1): 15045. 10.1038/s41598-020-71703-6.

[36] T. M. Htay, K. K. Sann, and H. Haini. (2023). "Comparative Study on Phytochemical Screening and Antioxidant Activity of Aqueous Extract from Various Parts of Bauhinia purpurea". Bioactivities. 1 (1): 24-31. 10.47352/bioactivities.2963-654X.183.

[37] S. Das and C. R. Patra. (2021). In: "Handbook of Greener Synthesis of Nanomaterials and Compounds". 139-170. 10.1016/b978-0-12-822446-5.00006-x.

[38] D. Amorim, B. Costa, and D. Martinez. (2023). "Biosorption of Pd(II) from Aqueous Solution using Leaves of Moringa oleifera as a Low-cost Biosorbent". Bioactivities. 1 (1): 9-17. 10.47352/bioactivities.2963-654X.181.

[39] H. F. Kiwumulo, H. Muwonge, C. Ibingira, M. Lubwama, J. B. Kirabira, and R. T. Ssekitoleko. (2022). "Green synthesis and characterization of iron-oxide nanoparticles using Moringa oleifera: a potential protocol for use in low and middle income countries". BMC Research Notes. 15 (1): 149. 10.1186/s13104-022-06039-7.

[40] B. Kumar, K. Smita, S. Galeas, V. Sharma, V. H. Guerrero, A. Debut, and L. Cumbal. (2020). "Characterization and application of biosynthesized iron oxide nanoparticles using Citrus paradisi peel: A sustainable approach". Inorganic Chemistry Communications. 11910.1016/j.inoche.2020.108116.

[41] K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski. (2001). "Biodegradable polymeric nanoparticles as drug delivery devices". Journal of Controlled Release. 70 (1-2): 1-20. 10.1016/s0168-3659(00)00339-4.

[42] S. K. Nune, P. Gunda, P. K. Thallapally, Y. Y. Lin, M. L. Forrest, and C. J. Berkland. (2009). "Nanoparticles for biomedical imaging". Expert Opinion on Drug Delivery. 6 (11): 1175-94. 10.1517/17425240903229031.

[43] J. Estelrich, M. J. Sanchez-Martin, and M. A. Busquets. (2015). "Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents". International Journal of Nanomedicine. 10 : 1727-41. 10.2147/IJN.S76501.

[44] A. Majumder, L. Ramrakhiani, D. Mukherjee, U. Mishra, A. Halder, A. K. Mandal, and S. Ghosh. (2019). "Green synthesis of iron oxide nanoparticles for arsenic remediation in water and sludge utilization". Clean Technologies and Environmental Policy. 21 (4): 795-813. 10.1007/s10098-019-01669-1.

[45] A. Daverey, N. Tiwari, and K. Dutta. (2019). "Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water". Environmental Science and Pollution Research. 26 (33): 34177-34183. 10.1007/s11356-018-3850-9.

[46] N. Joudeh and D. Linke. (2022). "Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists". Journal of Nanobiotechnology. 20 (1): 262. 10.1186/s12951-022-01477-8.

[47] E. Shahbazali, V. Hessel, T. Noël, and Q. Wang. (2016). "Metallic nanoparticles made in flow and their catalytic applications in micro-flow reactors for organic synthesis". Physical Sciences Reviews. 1 (2). 10.1515/psr-2015-0016.

[48] M. S. H. Bhuiyan, M. Y. Miah, S. C. Paul, T. D. Aka, O. Saha, M. M. Rahaman, M. J. I. Sharif, O. Habiba, and M. Ashaduzzaman. (2020). "Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity". Heliyon. 6 (8): e04603. 10.1016/j.heliyon.2020.e04603.

[49] S. Mourdikoudis, R. M. Pallares, and N. T. K. Thanh. (2018). "Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties". Nanoscale. 10 (27): 12871-12934. 10.1039/c8nr02278j.

[50] U. Ulusoy. (2023). "A Review of Particle Shape Effects on Material Properties for Various Engineering Applications: From Macro to Nanoscale". Minerals. 13 (1). 10.3390/min13010091.

[51] W. Xu, T. Yang, S. Liu, L. Du, Q. Chen, X. Li, J. Dong, Z. Zhang, S. Lu, Y. Gong, L. Zhou, Y. Liu, and X. Tan. (2022). "Insights into the Synthesis, types and application of iron Nanoparticles: The overlooked significance of environmental effects". Environment International. 158. 10.1016/j.envint.2021.106980.

[52] X. Song, W. Xu, D. Su, J. Tang, and X. Liu. (2020). "The Synthesis of Hollow/Porous Cu(2)O Nanoparticles by Ion-Pairing Behavior Control". ACS Omega. 5 (4): 1879-1886. 10.1021/acsomega.9b03380.

[53] Y. Bao, T. Wen, A. C. Samia, A. Khandhar, and K. M. Krishnan. (2016). "Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine". Journal of Materials Science. 51 (1): 513-553. 10.1007/s10853-015-9324-2.

[54] A. K. Fellenberg, A. Addad, J. Hong, P. Simon, Y. Kosto, B. Šmíd, G. Ji, and A. Y. Khodakov. (2021). "Iron and copper nanoparticles inside and outside carbon nanotubes: Nanoconfinement, migration, interaction and catalytic performance in Fischer-Tropsch synthesis". Journal of Catalysis. 404 306-323. 10.1016/j.jcat.2021.09.034.

[55] P. Kharey, M. Goel, Z. Husain, R. Gupta, D. Sharma, M. M, I. A. Palani, and S. Gupta. (2023). "Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications". Materials Chemistry and Physics. 29310.1016/j.matchemphys.2022.126859.

[56] R. Bhateria and R. Singh. (2019). "A review on nanotechnological application of magnetic iron oxides for heavy metal removal". Journal of Water Process Engineering. 3110.1016/j.jwpe.2019.100845.

Downloads

Published

2023-10-07

How to Cite

[1]
E. U. Ikhuoria, I. E. Uwidia, R. O. Okojie, I. H. Ifijen, I. D. Chikaodili, and A. Fatiqin, “Advancing Green Nanotechnology: Harnessing the Bio-reducing Properties of Musa paradisiaca Peel Extract for Sustainable Synthesis of Iron Oxide Nanoparticles”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 108-119, Oct. 2023.