Enhancing Photocatalytic Activity of Bismuth Ferrite (BiFeO3) via Gadolinium and Copper Doping: A Sol-Gel Synthesis and Characterization Study
DOI:
https://doi.org/10.47352/jmans.2774-3047.192Keywords:
bismuth ferrite, sol–gel method, rare earth material, transition metal, photocatalytic, Rhodamine BAbstract
In this current research work, the sol-gel method was employed to synthesise, characterize and evaluate the photocatalytic activity of bismuth ferrite (BiFeO3, BFO) doped with two distinctive components consisting of a rare earth element Gadolinium (Gd) and a transition metal Copper (Cu). The dopant concentrations were systematically varied with different weight percentages (wt.%) denoted as Bi1-xGdxFe1-yCuyO3 (where ‘x’ = 0.10, 0.15 and 0.20 wt.%, where ‘y’ = 0.05, 0.10, and 0.15 wt.%). Subsequently, characterizations of the prepared samples were conducted using an array of cutting-edge analytical techniques including X-ray diffraction (XRD), filed emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX), and transmission electron microscopy (TEM). The XRD analysis results indicated that the presence of small impurity peaks was found in both Gd-doped BFO and GdCu-doped BFO. The FE-SEM and TEM results provided confirmation that the material was observed as a spherical shape, and the elemental compositions were also confirmed through EDAX analysis. The photocatalytic degradation of Rhodamine B dye under the influence of visible light irradiation was carried out and the results revealed varying degradation times, specifically, for Gd and Cu-doped BFO (Gd and Cu = 0.1 wt.%) achieved almost 98% degradation occurred in 30 minutes.
References
[1] M. Rashid, W. Hassan, M. Aadil, H. H. Somaily, N. M. Mahdi, R. Lataef, A. G. Taki, K. Srithilat, D. F. Baamer, S. M. Albukhari, M. A. Salam, and A. llyas. (2023). "Solar-light-driven and magnetically recoverable doped nano-ferrite: An ideal photocatalyst for water purification applications". Optical Materials. 135. 10.1016/j.optmat.2022.113192.
DOI: https://doi.org/10.1016/j.optmat.2022.113192[2] P. R. Yaashikaa and P. S. Kumar. (2022). "Fabrication and characterization of magnetic nanomaterials for the removal of toxic pollutants from water environment: A review". Chemosphere. 303 (Pt 2): 135067. 10.1016/j.chemosphere.2022.135067.
DOI: https://doi.org/10.1016/j.chemosphere.2022.135067[3] X. Qu, D. Xie, L. Cao, and F. Du. (2014). "Synthesis and characterization of TiO2/ZrO2 coaxial core–shell composite nanotubes for photocatalytic applications". Ceramics International. 40 (8): 12647-12653. 10.1016/j.ceramint.2014.04.111.
[4] M. Aadil, A. Rahman, S. Zulfiqar, I. A. Alsafari, M. Shahid, I. Shakir, P. O. Agboola, S. Haider, and M. F. Warsi. (2021). "Facile synthesis of binary metal substituted copper oxide as a solar light driven photocatalyst and antibacterial substitute". Advanced Powder Technology. 32 (3): 940-950. 10.1016/j.apt.2021.01.040.
DOI: https://doi.org/10.1016/j.apt.2021.01.040[5] Y. Chen, T. Liu, C. Chen, W. Guo, R. Sun, S. Lv, M. Saito, S. Tsukimoto, and Z. Wang. (2013). "Synthesis and characterization of CeO2 nano-rods". Ceramics International. 39 (6): 6607-6610. 10.1016/j.ceramint.2013.01.096.
[6] A. Bashir, L. A. Malik, S. Ahad, T. Manzoor, M. A. Bhat, G. N. Dar, and A. H. Pandith. (2018). "Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods". Environmental Chemistry Letters. 17 (2): 729-754. 10.1007/s10311-018-00828-y.
[7] Y. Fu, P. Xu, D. Huang, G. Zeng, C. Lai, L. Qin, B. Li, J. He, H. Yi, M. Cheng, and C. Zhang. (2019). "Au nanoparticles decorated on activated coke via a facile preparation for efficient catalytic reduction of nitrophenols and azo dyes". Applied Surface Science. 473 : 578-588. 10.1016/j.apsusc.2018.12.207.
[8] J. Wang and H. Chen. (2020). "Catalytic ozonation for water and wastewater treatment: Recent advances and perspective". Science of The Total Environment. 704 : 135249. 10.1016/j.scitotenv.2019.135249.
[9] A. Aziz, F. Basheer, A. Sengar, Irfanullah, S. U. Khan, and I. H. Farooqi. (2019). "Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater". Science of The Total Environment. 686 : 681-708. 10.1016/j.scitotenv.2019.05.295.
DOI: https://doi.org/10.1016/j.scitotenv.2019.05.295[10] M. d. l. Á. Bernal-Romero del Hombre Bueno, N. Boluda-Botella, and D. Prats Rico. (2019). "Removal of emerging pollutants in water treatment plants: adsorption of methyl and propylparaben onto powdered activated carbon". Adsorption. 25 (5): 983-999. 10.1007/s10450-019-00120-7.
DOI: https://doi.org/10.1007/s10450-019-00120-7[11] N. Rosman, W. N. W. Salleh, M. A. Mohamed, J. Jaafar, A. F. Ismail, and Z. Harun. (2018). "Hybrid membrane filtration-advanced oxidation processes for removal of pharmaceutical residue". Journal of Colloid and Interface Science. 532 : 236-260. 10.1016/j.jcis.2018.07.118.
[12] B. Rajitha, K. V. Rao, and R. P. Suvarna. (2020). "Synthesis of multiferroic BiFeO3 microcrystals for photocatalytic activity and stability performance". Materials Today: Proceedings. 26 : 126-129. 10.1016/j.matpr.2019.06.325.
[13] R. Beerelli, R. Vanga, and P. Suvarna. (2023). "Effect of Copper doped and Magnesium co-doped BiFeO3 for photocatalytic activity". Journal of Water and Environmental Nanotechnology. 8 (3): 285-292. 10.22090/JWENT.2023.03.007.
[14] W. Guo, M. Fu, C. Zhai, and Z. Wang. (2014). "Hydrothermal synthesis and gas-sensing properties of ultrathin hexagonal ZnO nanosheets". Ceramics International. 40 (1): 2295-2298. 10.1016/j.ceramint.2013.07.150.
[15] J. Wang, W. Zeng, and Z. Wang. (2016). "Assembly of 2D nanosheets into 3D flower-like NiO: Synthesis and the influence of petal thickness on gas-sensing properties". Ceramics International. 42 (3): 4567-4573. 10.1016/j.ceramint.2015.11.150.
[16] F. Davar and M. R. Loghman-Estarki. (2014). "Synthesis and optical properties of pure monoclinic zirconia nanosheets by a new precursor". Ceramics International. 40 (6): 8427-8433. 10.1016/j.ceramint.2014.01.052.
[17] L. Renuka, K. S. Anantharaju, S. C. Sharma, H. Nagabhushana, Y. S. Vidya, H. P. Nagaswarupa, and S. C. Prashantha. (2017). "A comparative study on the structural, optical, electrochemical and photocatalytic properties of ZrO2 nanooxide synthesized by different routes". Journal of Alloys and Compounds. 695 : 382-395. 10.1016/j.jallcom.2016.10.126.
DOI: https://doi.org/10.1016/j.jallcom.2016.10.126[18] E. S. Agorku, A. T. Kuvarega, B. B. Mamba, A. C. Pandey, and A. K. Mishra. (2015). "Enhanced visible-light photocatalytic activity of multi-elements-doped ZrO2 for degradation of indigo carmine". Journal of Rare Earths.33 (5): 498-506. 10.1016/s1002-0721(14)60447-6.
DOI: https://doi.org/10.1016/S1002-0721(14)60447-6[19] A. Fakhri, S. Behrouz, I. Tyagi, S. Agarwal, and V. K. Gupta. (2016). "Synthesis and characterization of ZrO2 and carbon-doped ZrO2 nanoparticles for photocatalytic application". Journal of Molecular Liquids. 216 : 342-346. 10.1016/j.molliq.2016.01.046.
[20] M. Khaksar, M. Amini, D. M. Boghaei, K. H. Chae, and S. Gautam. (2015). "Mn-doped ZrO2 nanoparticles as an efficient catalyst for green oxidative degradation of methylene blue". Catalysis Communications. 72 : 1-5. 10.1016/j.catcom.2015.08.023.
[21] M. Sase. (2008). "Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics". Solid State Ionics. 178 (35-36): 1843-1852. 10.1016/j.ssi.2007.11.039.
DOI: https://doi.org/10.1016/j.ssi.2007.11.039[22] M. Rhodes and A. Bell. (2005). "The effects of zirconia morphology on methanol synthesis from CO and H2H2 over Cu/ZrO2Cu/ZrO2 catalystsPart I. Steady-state studies". Journal of Catalysis. 233 (1): 198-209. 10.1016/j.jcat.2005.04.026.
DOI: https://doi.org/10.1016/j.jcat.2005.04.026[23] Y. Jia, C. Wu, D.-H. Kim, B. W. Lee, S. J. Rhee, Y. C. Park, C. S. Kim, Q. J. Wang, and C. Liu. (2018). "Nitrogen doped BiFeO3 with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light". Chemical Engineering Journal. 337 : 709-721. 10.1016/j.cej.2017.12.137.
[24] Y. Huo, Y. Jin, and Y. Zhang. (2010). "Citric acid assisted solvothermal synthesis of BiFeO3 microspheres with high visible-light photocatalytic activity". Journal of Molecular Catalysis A: Chemical. 331 (1-2): 15-20. 10.1016/j.molcata.2010.08.009.
[25] T. Xian, H. Yang, J. F. Dai, Z. Q. Wei, J. Y. Ma, and W. J. Feng. (2011). "Photocatalytic properties of BiFeO3 nanoparticles with different sizes". Materials Letters. 65 (11): 1573-1575. 10.1016/j.matlet.2011.02.080.
[26] Y. Liu, R. Zuo, and S. Qi. (2013). "Controllable preparation of BiFeO3@carbon core/shell nanofibers with enhanced visible photocatalytic activity". Journal of Molecular Catalysis A: Chemical. 376 : 1-6. 10.1016/j.molcata.2013.04.005.
[27] R. Guo, L. Fang, W. Dong, F. Zheng, and M. Shen. (2010). "Enhanced Photocatalytic Activity and Ferromagnetism in Gd Doped BiFeO3 Nanoparticles". The Journal of Physical Chemistry C. 114 (49): 21390-21396. 10.1021/jp104660a.
[28] B. Samran, P. Krongkitsiri, and S. Chaiwichian. (2018). "Effect of Copper Dopants on Visible-Light-Driven Photocatalytic Activity of BiFeO3 Photocatalysts". Modern Environmental Science and Engineering. 4 : 234-243. 10.15341/mese(2333-2581)/03.04.2018/006.
[29] J. Mao, X. Quan, J. Wang, C. Gao, S. Chen, H. Yu, and Y. Zhang. (2018). "Enhanced heterogeneous Fenton-like activity by Cu-doped BiFeO3 perovskite for degradation of organic pollutants". Frontiers of Environmental Science & Engineering. 12 (6). 10.1007/s11783-018-1060-9.
[30] P. R. B, H. Cui, C. S. M, S. V. P. Vattikuti, Y. Suh, and S.-H. Park. (2019). "Influence of Gd doping on the visible-light photocatalytic activity and magnetic properties of BiFeO3 particles". Materials Research Express. 6 (11). 10.1088/2053-1591/ab463d.
[31] N. Tian, Y. Zhang, H. Huang, Y. He, and Y. Guo. (2014). "Influences of Gd Substitution on the Crystal Structure and Visible-Light-Driven Photocatalytic Performance of Bi2WO6". The Journal of Physical Chemistry C. 118(29): 15640-15648. 10.1021/jp500645p.
[32] R. Beerelli, R. Vanga, and R. P. Suvarna. (2023). "Influence of rare earth (Gd) and transition (Cu) doping in bismuth ferrite for photocatalytic activity and stability performance". Research Square. 10.21203/rs.3.rs-3099139/v1
[33] M. Umar, N. Mahmood, S. U. Awan, S. Fatima, A. Mahmood, and S. Rizwan. (2019). "Rationally designed La and Se co-doped bismuth ferrites with controlled bandgap for visible light photocatalysis". RSC Advances. 9 (30): 17148-17156. 10.1039/c9ra03064f.
DOI: https://doi.org/10.1039/C9RA03064FDownloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Beerelli Rajitha, Vanga Rajendar, Padma Suvarna

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.