The Utilization of Pectin as Natural Coagulant-Aid in Congo Red Dye Removal

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.179

Keywords:

Congo red, coagulant-aid, natural coagulant, pectin

Abstract

Coagulation using inorganic compounds such as aluminum sulfate is commonly used in water-wastewater treatment. However, there are some drawbacks to its utilization, such as a significant decrease in the treated water’s pH, non-biodegradable sludge, and a potential negative impact on human mental health (dementia and Alzheimer's). The use of inorganic coagulants can be minimized with the addition of natural-based coagulant-aid such as pectin. In this study, Congo red solution, a model dye substance, was coagulated by varying the pH (3–7) using alum coagulant to determine the best pH for coagulation. At the best pH, pectin was introduced at various doses (0–30 mg/L), and subsequently various dye concentrations (50–100 mg/L). The effect of pectin as coagulant-aid was compared with aluminum sulfate and pectin only; with a response of %removal and sludge volume. It was found that the Congo red dye coagulation had the best %removal at pH 6 indicating a charge neutralization mechanism. The addition of 15 mg/L pectin at an aluminum sulfate dose of 30 mg/L resulted in 97.7% dye removal with a sludge volume of 14 mL/L at a Congo red concentration of 50 mg/L. This value is higher compared to those of aluminum sulfate and pectin only which gave 75.6 and 3.19% removals, respectively. Furthermore, the addition of pectin as a natural coagulant-aid could halve the sludge volume due to the formation of denser flocs. The results show a promising potential of pectin as a natural coagulant-aid in water-wastewater treatment.

References

[1] A. K. Verma, R. R. Dash, and P. Bhunia. (2012). "A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters". Journal of Environmental Management. 93 : 154–168. 10.1016/j.jenvman.2011.09.012.

[2] G. Crini and E. Lichtfouse. (2019). "Advantages and disadvantages of techniques used for wastewater treatment". Environmental Chemistry Letters. 17 : 145–155. 10.1007/s10311-018-0785-9.

[3] C.-Y. Yin. (2010). "Emerging usage of plant-based coagulants for water and wastewater treatment". Process Biochemistry. 45 : 1437-1444. 10.1016/j.procbio.2010.05.030.

[4] H. Kristianto. (2021). "Recent advances on magnetic natural coagulant: a mini review". Environmental Technology Review. 10 (1): 254-269. 10.1080/21622515.2021.1986576.

[5] A. Ibrahim, A. Z. Yaser, and J. Lamaming. (2021). "Synthesising tannin-based coagulants for water and wastewater application: A review". Journal of Environmental Chemical Engineering. 9 (1): 105007. 10.1016/j.jece.2020.105007.

[6] E. Díaz-Montes. (2022). "Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films". Polysaccharides. 3 : 480-501. 10.3390/polysaccharides3030029.

[7] C. Y. Teh, T. Y. Wu, and J. C. Juan. (2014). "Optimization of agro-industrial wastewater treatment using unmodified rice starch as a natural coagulant". Industrial Crops and Products. 56 : 17–26. 10.1016/j.indcrop.2014.02.018.

[8] M. S. Zafar, M. Tausif, M. Mohsin, S. W. Ahmad, and M. Zia-ul-Haq. (2015). "Potato Starch as a Coagulant for Dye Removal from Textile Wastewater". Water, Air, & Soil Pollution. 226 (8): 244. 10.1007/s11270-015-2499-y.

[9] H. A. Aziz and N. I. M. Sobri. (2015). "Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment". Environmental Science and Pollution Research. 22 : 16943–16950. 10.1007/s11356-015-4895-7.

[10] S. Y. Choy, K. N. Prasad, T. Y. Wu, M. E. Raghunandan, and R. N. Ramanan. (2016). "Performance of conventional starches as natural coagulants forturbidity removal". Ecological Engneering. 94 : 352-364. 10.1016/j.ecoleng.2016.05.082.

[11] H. Kristianto, A. Jennifer, A. K. Sugih, and S. Prasetyo. (2020). "Potensi Polisakarida dari Limbah Buah-buahan sebagai Koagulan Alami dalam Pengolahan Air dan Limbah Cair: Review". Jurnal Rekayasa Proses. 14 (2): 108-127. 10.22146/jrekpros.57798.

[12] R. Sanghi, B. Bhatttacharya, and V. Singh. (2002). "Cassia angustifolia seed gum as an effective natural coagulant for decolourisation of dye solutions". Green Chemistry. 4 : 252–254. 10.1039/B200067A.

[13] R. Sanghi, B. Bhattacharya, A. Dixit, and V. Singh. (2006). "Ipomorea dasysperma seed gum: An effective natural coagulant for the decolorization of textile dye solutions". Journal of Environmental Management. 81 (1): 36-41. 10.1016/j.jenvman.2005.09.015.

[14] K. P. Y. Shak and T. Y. Wu. (2015). "Optimized use of alum together with unmodified Cassia obtusifolia seed gum as a coagulant aid in treatment of palm oil mill effluent under natural pH of wastewater". Industrial Crops and Products. 76 : 1169–1178. 10.1016/j.indcrop.2015.07.072.

[15] H. Kristianto, S. A. Saraswati, S. Prasetyo, and A. K. Sugih. (2023). "The utilization of galactomannan from spent coffee grounds as a coagulant aid for treatment of synthetic Congo red wastewater". Environmental Development and Sustainability.  25 : 5443–5457. 10.1007/s10668-022-02274-x.

[16] K. Q. Lau, M. R. Sabran, and S. R. Shafie. (2021). "Utilization of Vegetable and Fruit By-products as Functional Ingredient and Food". Frontiers in Nutrition. 8 : 661693. 10.3389/fnut.2021.661693.

[17] S. Y. Choy, K. M. N. Prasad, T. Y. Wu, M. E. Raghunandan, B. Yang, S.-M. Phang, and R. N. Ramanan. (2017). "Isolation, characterization and the potential use of starch from jackfruit seed wastes as a coagulant aid for treatment of turbid water". Environmental Science and Pollution Research. 24 : 2876–2889. 10.1007/s11356-016-8024-z.

[18] M. V. Nsom, E. P. Etape, J. F. Tendo, B. V. Namond, P. T. Chongwain, M. D. Yufanyi, and N. William. (2019). "A Green and Facile Approach for Synthesis of Starch-Pectin Magnetite Nanoparticles and Application by Removal of Methylene Blue from Textile Effluent". Journal of Nanomaterials. 2019 : 4576135. 10.1155/2019/4576135.

[19] M. C. N. Picot-Allain, B. Ramasawmy, and M. N. Emmambux. (2022). "Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review". Food Reviews International. 38 (3):  10.1080/87559129.2020.1733008.

[20] M. Moslemi. (2021). "Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market". Carbohydrate Polymers. 254 : 117324. 10.1016/j.carbpol.2020.117324.

[21] F. Naqash, F. A. Masoodi, S. A. Rather, S. M. Wani, and A. Gani. (2017). "Emerging concepts in the nutraceutical and functional properties of pectin—A Review". Carbohydrate Polymers. 168 : 227-239. 10.1016/j.carbpol.2017.03.058.

[22] H. A. Schols and A. G. J. Voragen. (1996). "Complex pectins:structure elucidation using enzymes". Progress in Biotechnology. 14 : 3–19. 10.1016/S0921-0423(96)80242-5.

[23] B. M. Yapo and D. Gnakri. (2014). In "K. G. Ramawat and J.-M. Mérillon (Eds) Polysaccharides: Bioactivity and Biotechnology". Springer, Cham. 1729-1749. 10.1007/978-3-319-16298-0_62.  

[24] M. Lapointe and B. Barbeau. (2020). "Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review". Separation and Purification Technology. 231 : 115893. 10.1016/j.seppur.2019.115893.

[25] S. J. C. d. Rosemond and K. Liber. (2009). "Wastewater treatment polymers identified as the toxic component of a diamond mine effluent". Environmental Toxicology and Chemistry. 23 (9): 2234-2242. 10.1897/03-609.

[26] D. Ibarra-Rodríguez, J. Lizardi-Mendoza, E. A. López-Maldonado, and M. T. Oropeza-Guzmán. (2017). "Capacity of ‘nopal’ pectin as a dual coagulant-flocculant agent for heavy metals removal". Chemical Engineering Journal.323 : 19-28. 10.1016/j.cej.2017.04.087.

[27] M. Kebaili, S. Djellali, M. Radjai, N. Drouiche, and H. Lounici. (2018). "Valorization of orange industry residues to form a natural coagulant and adsorbent". Journal of Industrial and Engineering Chemistry. 64 : 292-299. 10.1016/j.jiec.2018.03.027.

[28] F. Shao, J. Xu, J. Zhang, L. Wei, C. Zhao, X. Cheng, C. Lu, and Y. Fu. (2021). "Study on the influencing factors of natural pectin's flocculation: Their sources, modification, and optimization". Water Environment Research. 93(10): 2261-2273. 10.1002/wer.1598.

[29] A. A. Cerqueira and M. R. d. C. Marques. (2012). In: " J. S. Gomes (Ed) New Technologies in the Oil and Gas Industry". IntechOpen.

[30] M. Chethana, L. G. Sorokhaibam, V. M. Bhandari, S. Raja, and V. V. Ranade. (2016). "Green approach to Dye Wastewater Treatment using Biocoagulants". ACS Sustainable Chemistry and Engineering. 4 (5): 2495–2507. 10.1021/acssuschemeng.5b01553.

[31] S. Zhao, B. Gao, Q. Yue, Y. Wang, Q. Li, H. Dong, and H. Yan. (2014). "Study of Enteromorpha polysaccharides as a new-style coagulant aid in dye wastewater treatment". Carbohydrate Polymers. 103 : 179-186. 10.1016/j.carbpol.2013.12.045.

[32] M. H. Zonoozi, M. R. A. Moghaddam, and M. Arami. (2009). "Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum". Water Science & Technology. 59 : 1343-1351.10.2166/wst.2009.128.

[33] S.-S. Liu and T.-T. Liang. (2004). "Return sludge employed in enhancement of color removal in the integrally industrial wastewater treatment plant". Water Research. 38 (1): 103-110. 10.1016/j.watres.2003.09.006.

[34] S.-C. Chua, F.-K. Chong, M. A. Malek, M. R. U. Mustafa, N. Ismail, W. Sujarwo, J.-W. Lim, and Y.-C. Ho. (2020). "Optimized Use of Ferric Chloride and Sesbania Seed Gum (SSG) as Sustainable Coagulant Aid for Turbidity Reduction in Drinking Water Treatment". Sustainability. 12 (6): 2273. 10.3390/su12062273.

[35] N. A. Awang and H. A. Aziz. (2012). "Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment". Applied Water Science. 2 : 293–298. 10.1007/s13201-012-0049-y.

[36] P. W. Wong, T. T. Teng, and N. A. R. N. Norulaini. (2007). "Efficiency of the Coagulation-Flocculation Method for the Treatment of Dye Mixtures Containing Disperse and Reactive Dye". Water Quality Research Journal. 42(1): 54-62. 10.2166/wqrj.2007.008.

[37] Y. A. J. Al-Hamadani, M. S. Yusoff, M. Umar, M. J. K. Bashir, and M. N. Adlan. (2011). "Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment". Journal of Hazardous Materials.190 (1-3): 582-587. 10.1016/j.jhazmat.2011.03.087.

[38] V. B. V. Maciel, C. M. P. Yoshida, S. M. S. S. Pereira, F. M. Goycoolea, and T. T. Franco. (2017). "Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery". Molecules. 22 (10): 1707. 10.3390/molecules22101707.

[39] J. Kristanda, K. Sandrosa, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2021). "Optimization study of Leucaena leucocephala seeds extract as natural coagulant on decolorization of aqueous Congo red solutions". Arabian Journal for Science and Engineering. 46 (7): 6275-6286. 10.1007/s13369-020-05008-1.

[40] M. M. Sudirgo, R. A. Surya, H. Kristianto, S. Prasetyo, and A. K. Sugih. (2023). "Application of xanthan gum as coagulant-aid for decolorization of synthetic Congo red wastewater". Heliyon 9 (4): E15011. 10.1016/j.heliyon.2023.e15011.

[41] J. Garvasis, A. R. Prasad, K. O. Shamsheera, P. K. Jaseela, and A. Joseph. (2020). "Efficient removal of Congo red from aqueous solutions using phytogenic aluminum sulfate nano coagulant". Materials Chemistry and Physics.251 : 123040. 10.1016/j.matchemphys.2020.123040.

[42] G. Vijayaraghavan and S. Shanthakumar. (2016). "Performance study on algal alginate as natural coagulant for the removal of Congo red dye". Desalination and Water Treatment. 57 : 6384–6392.10.1080/19443994.2015.1008578.

[43] H. Patel and R. T. Vashi. (2012). "Removal of Congo Red dye from its aqueous solution using natural coagulants". Journal of Saudi Chemical Society. 16 : 131–136. 10.1016/j.jscs.2010.12.003.

Downloads

Published

2023-06-21

How to Cite

[1]
F. M. K. Haryanto, A. V. M. Rumondor, H. Kristianto, S. Prasetyo, and A. K. Sugih, “The Utilization of Pectin as Natural Coagulant-Aid in Congo Red Dye Removal”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 39-48, Jun. 2023.