Composition of Stand and Growth Dynamics of Black Cardamom (Amomum subulatum) in Different Agroforestry Habitats in Bhutan




agroforestry, altitude, Amomum subulatum, composition, growth


The composition and arrangement of tree species at different altitudes play a vital environmental role in the growth of Black Cardamom (Amomum subulatum) in Bhutan. The present study assesses agroforestry tree species composition and factors affecting the growth of A. subulatum in different habitat types. Altitudes were sorted into three different altitudinal bands (low, mid, and high) and each altitudinal band in three different habitats (timber tree, fodder tree, and mixed tree habitat) was assessed. The sampling of 48 plots was made for each habitat and the plot size was 20×20 m. In total, 144 plots were sampled systematically within the selected altitudinal bands in three different habitats. The 56 ecologically important agroforestry shade tree species were used for growing A. subulatum. Tree species preference of A. subulatumchanged based on different altitudes and habitat types [F(2, 33) = 45.672, P = .001]. Critical factors affecting the growth are tree canopy cover (r = –0.461) and infested A. subulatum stems (r = –0.765). The increasing number of infested stems retarded the growth and dense canopy cover or open canopy reduces the growth rate of A. subulatum. Overall, growth was suitable in timber tree habitat at mid altitudes, where Alnus nepalensis was the dominating species having 41.40% canopy cover with low pest and disease-infested A. subulatum stems. Significantly, the lower altitudinal band and the fodder tree habitats were found to be unsuitable for growth (p < 0.05).  Thus, appropriate site selection, canopy cover and altitude could provide optimum growth.


[1] Kumar. (2016). "Multifunctional agroforestry systems in tropics region". Nature Environment and Pollution Technology. 15 (2): 365.

[2] R. J. Zomer, H. Neufeldt, J. Xu, A. Ahrends, D. Bossio, A. Trabucco, M. van Noordwijk, and M. Wang. (2016). "Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets". Scientific reports. 6 29987. 10.1038/srep29987.

[3] R. J. Zomer, A. Trabucco, D. A. Bossio, and L. V. Verchot. (2008). "Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation". Agriculture, Ecosystems & Environment. 126 (1-2): 67-80. 10.1016/j.agee.2008.01.014.

[4] S. Dhyani, I. K. Murthy, R. Kadaverugu, R. Dasgupta, M. Kumar, and K. Adesh Gadpayle. (2021). "Agroforestry to Achieve Global Climate Adaptation and Mitigation Targets: Are South Asian Countries Sufficiently Prepared?". Forests. 12 (3): 303. 10.3390/f12030303.

[5] G. Rasul and M. Kollmair. (2010). "Sustainable livelihood promotion through agricultural development in the hills of South Asia". 167-182.

[6] F. Ahmad, M. Uddin, L. Goparaju, J. Rizvi, and C. Biradar. (2020). "Quantification of the land potential for scaling agroforestry in South Asia". KN - Journal of Cartography and Geographic Information. 70 (2): 71-89. 10.1007/s42489-020-00045-0.

[7] R. J. Zomer, H. Neufeldt, J. Xu, A. Ahrends, D. Bossio, A. Trabucco, M. Van Noordwijk, and M. J. S. r. Wang. (2016). "Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets". Scientific Reports. 6 (1): 1-12.

[8] M. S. Park, H. Baral, and S. Shin.(2022). "Systematic Approach to Agroforestry Policies and Practices in Asia". Forests. 13 (5): 635. 10.3390/f13050635

[9] S. Aminuddin, B. Nurkin, S. Millang, and S. Larekeng. (2021). "Function of tree components in agroforestry forms in Bolaromang Village, Buttono District, Gowa Regency". IOP Conference Series: Earth and Environmental Science. 870 (1): 012029. 10.1088/1755-1315/870/1/012029.

[10] J. Alao and R. Shuaibu. (2013). "Agroforestry practices and concepts in sustainable land use systems in Nigeria". Journal of Horticulture and Forestry. 5 (10): 156-159. 10.5897/JHF11.055.

[11] Sharma and O. R. Vetaas. (2015). "Does agroforestry conserve trees? A comparison of tree species diversity between farmland and forest in mid-hills of central Himalaya". Biodiversity and Conservation. 24 (8): 2047-2061. 10.1007/s10531-015-0927-3.

[12] N. Bhattarai, L. Joshi, B. Karky, K. Windhorst, and W. Ning. (2016). "Potential synergies for agroforestry and REDD+ in the Hindu Kush Himalaya". International Centre for Integrated Mountain Development.

[13] Kumar and P. R. Nair. (2011). "Carbon sequestration potential of agroforestry systems: opportunities and challenges". 

[14] T. S. Rosenstock, A. Wilkes, C. Jallo, N. Namoi, M. Bulusu, M. Suber, D. Mboi, R. Mulia, E. Simelton, M. J. A. Richards, Ecosystems, and Environment. (2019). "Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries". Agriculture, Ecosystems & Environment. 284 : 106569. 10.1016/j.agee.2019.106569.

[15] T. Abebe, F. Sterck, K. Wiersum, and F. J. A. s. Bongers. (2013). "Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia". Agroforestry Systems. 87 (6): 1283-1293. 10.1007/s10457-013-9637-6.

[16] T. Gurung and K. Temphel. (2015). "Technological advancement in agroforestry systems: Strategy for climate smart agricultural technologies in SAARC Region". 

[17] Y. Paudel and S. Shrestha. (2022). "Agroforestry Practices Prevailing in SAARC Countries: A Review". Indonesian Journal of Social and Environmental Issues (IJSEI). 3 (1): 10-18. 10.47540/ijsei.v3i1.390.

[18] J. Tornar and B. Bhatt. (2005). "Studies on agroaquaculture agroforestry system in north eastern Himalayas, India". Indian J Hill Farming18 21-27.

[19] A. Mirzabaev, E. Nkonya, and J. von Braun. (2015). "Economics of sustainable land management". Current Opinion in Environmental Sustainability. 15 9-19. 10.1016/j.cosust.2015.07.004.

[20] T. Nath, M. Inoue, F. Pradhan, and M. Kabir. (2011). "Indigenous practices and socio-economics of Areca catechu L. and Piper betel L. based innovative agroforestry in northern rural Bangladesh". Forests, Trees and Livelihoods. 20 (2-3): 175-190. 10.1080/14728028.2011.9756705.

[21] K. H. Widianto, D. Suharjito, and M. A. J. I. B. Sardjono. (2003). "Fungsi dan peran agroforestri". 

[22] N. Chhogyel, L. Kumar, Y. Bajgai, and M. K. Hasan. (2020). "Perception of farmers on climate change and its impacts on agriculture across various altitudinal zones of Bhutan Himalayas". International Journal of Environmental Science and Technology. 17 (8): 3607-3620. 10.1007/s13762-020-02662-8.

[23] D. Neuhoff, S. Tashi, G. Rahmann, and M. Denich. (2014). "Organic agriculture in Bhutan: potential and challenges". Organic Agriculture. 4 (3): 209-221. 10.1007/s13165-014-0075-1.

[24] P. Satyal, N. S. Dosoky, B. L. Kincer, and W. N. Setzer. (2012). "Chemical Compositions and Biological Activities of Amomum subulatum Essential Oils from Nepal". Natural Product Communications. 7 (9): 10.1177/1934578x1200700935.

[25] E. Tadesse, M. Negash, and Z. Asfaw. (2021). "Impacts of traditional agroforestry practices, altitudinal gradients and households’ wealth status on perennial plants species composition, diversity, and structure in south-central Ethiopia". Agroforestry Systems. 95 (8): 1533-1561. 10.1007/s10457-021-00659-x.

[26] D. Thinley and B. Suberi. (2021). "Regeneration, Stand Structure and Species Composition of Magnolia lanuginosa (Wall.) Figlar & Noot. Forest in Kengkhar, Bhutan". Bhutan Journal of Natural Resources and Development. 8 (1): 10-10. 10.17102/cnr.2021.59.

[27] Sharma, R. Sharma, and E. Sharma. (2009). "Traditional knowledge systems in large cardamom farming: biophysical and management diversity in Indian mountainous regions".

[28] G. Eyasu, M. Tolera, and M. Negash. (2020). "Woody species composition, structure, and diversity of homegarden agroforestry systems in southern Tigray, Northern Ethiopia". Heliyon. 6 (12): e05500. 10.1016/j.heliyon.2020.e05500.

[29] Singh, S. Das, and R. Avasthe. (2018). "Effect of multipurpose trees on production of large cardamom and soil fertility in agroforestry systems in Sikkim, Himalaya". Indian Journal of Agroforestry. 20 (2): 25-29.

[30] M. Xu, L. Ma, Y. Jia, and M. Liu. (2017). "Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China". Plos One. 12 (3): e0174231. 10.1371/journal.pone.0174231.

[31] M. Anitha and J. Hore. (2018). In: "A. Sharangi (ed) Indian Spices". Springer, Cham. 95-175. 10.1007/978-3-319-75016-3_6.

[32] B. K. Negi, R. K. Joshi, and A. Pandey. (2018). "Status of large cardamom (Amomum subulatum roxb.) Farming systems in the changing scenario of modern economics of Sikkim, Himalaya". Global Journal of Bioscience and Biotechnology. 7 : 189-199.

[33] S. Buckhingham. (2004). "Community based conservation in the Hoang Lien Mountains. Synthesis report on cardamom cultivation". 

[34] B. Dhakal, M. A. Pinard, I. N. Gunatilleke, C. S. Gunatilleke, H. M. Weerasinghe, A. Dharmaparakrama, and D. F. Burslem. (2012). "Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka". Forest Ecology and Management. 274 : 151-160. 10.1016/j.foreco.2012.02.021.

[35] J.-R. Makana and S. Thomas. (2006). In: " D. L. Hawksworth, A. T. Bull Forest Diversity and Management" Springer, Dordrecht. 315-337. 10.1007/978-1-4020-5208-8_17.

[36] R. Bertrand, J. Lenoir, C. Piedallu, G. Riofrío-Dillon, P. De Ruffray, C. Vidal, J.-C. Pierrat, and J.-C. Gégout. (2011). "Changes in plant community composition lag behind climate warming in lowland forests". Nature. 479(7374): 517-520. 10.1038/nature10548.

[37] D. W. Schwilk and D. D. Ackerly. (2005). "Limiting similarity and functional diversity along environmental gradients". Ecology Letters. 8 (3): 272-281. 10.1111/j.1461-0248.2004.00720.x.

[38] G. Brūmelis, I. Dauškane, D. Elferts, L. Strode, T. Krama, and I. Krams. (2020). "Estimates of tree canopy closure and basal area as proxies for tree crown volume at a stand scale". Forest. 11 (11): 1180. 10.3390/f11111180.

[39] Y. Devi, D. Bhardwaj, N. A. Pala, and C. Thakur. (2019). "Influence of tree diameter and trunk distance on growth and yield of field crops in agroecosystems of North-Western Himalaya". Indian Journal of Agroforestry. 21 (1): 54-59.

[40] R. Cerda, C. Allinne, C. Gary, P. Tixier, C. A. Harvey, L. Krolczyk, C. Mathiot, E. Clément, J.-N. Aubertot, and J. Avelino. (2017). "Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems". European Journal of Agronomy. 82 308-319. 10.1016/j.eja.2016.09.019.

[41] A. B. Pun. (2018). "A Review on Different Factors of Large Cardamom Decline in Nepal". Asian Journal of Research in Crop Science. 2 (4): 1-6. 10.9734/AJRCS/2018/46732.

[42] S. Maharjan, F. M. Qamer, M. Matin, G. Joshi, and S. Bhuchar. (2019). "Integrating modelling and expert knowledge for evaluating current and future scenario of large cardamom crop in eastern Nepal". Agronomy. 9 (9): 481. 10.3390/agronomy9090481.

[43] Ghanashyam, R. Sharma, and E. Sharma. (2009). "Traditional knowledge systems in large cardamom farming: biophysical and management diversity in Indian mountainous regions".

[44] K. Shrestha. (2018). "Growth Trend Analysis of Large Cardamom in Nepal". Nepalese Horticulture. 13 (1): 59-69.

[45] P. Yadav, K. Shrestha, and D. Mandal. (2015). "Present situation and future strategies for research and development of Large Cardamom in Nepal". Proceedings of the Stakeholders Consultation Workshop on Large Cardamom Development in Nepal. 1-8.

[46] T. Pratap and S. Toppo. (2019). "Tree crop interaction in agroforestry system: A review". International Journal of Chemical Studies. 7 (1). 

[47] Sharma, G. Sharma, and E. Sharma. (2002). "Energy efficiency of large cardamom grown under Himalayan alder and natural forest". Agroforestry Systems. 56 (3): 233-239.

[48] M. Altieri and C. Nicholls. (2004). In "Ecological engineering for pest management: advances in habitat manipulation for arthropods". CSIRO, Collingwood. 143-155.

[49] T. Hrideek. (2012). "Shade trees and its importance in cardamom plantations". Indian Journal of Arecanut Spices and Medicinal Plants. 14 (4): 22-26.

[50] Singh, A. Krishna, and E. Sharma. (2000). "Effects of altitude and shade-tree types on large cardamom chlorophyll, nitrogen and spectral properties in the Sikkim Himalaya". International Journal of Ecology and Environmental Sciences. 26 (2-3): 139-147.




How to Cite

B. S. Koirala, B. Suberi, R. Chhetri, and T. Gyeltshen, “Composition of Stand and Growth Dynamics of Black Cardamom (Amomum subulatum) in Different Agroforestry Habitats in Bhutan”, J. Multidiscip. Appl. Nat. Sci., vol. 3, no. 2, pp. 149-160, May 2023.