An Analytic Solution to The Inhomogeneous Verhulst Equation Using Multiple Expansion Methods




Environmental Factor, inhomogeneous Verhults equation, multiple scale expansion


The present study aims to obtain an analytic solution for the inhomogeneous Verhults equation using multiple expansion methods. This study identifies the external factors represented by the inhomogeneous term that determine optimal variable conditions for ecosystem population growth. The simulation involves scenarios that utilize constant growth rates, periodic growth rates, constant external factors, and periodic external factors. It is found that external factors increase population growth, whereas constant external factors prevent growth under saturation conditions. Periodic external factors cause fluctuations in the amplitude of growth regions. The present study will highlight and discuss the development and application of the solution.


[1] M. M. A. Khater. (2022). "Nonlinear biological population model; computational and numerical investigations". Chaos, Solitons & Fractals. 162

[2] S. Kumar, A. Kumar, B. Samet, and H. Dutta. (2020). "A study on fractional host–parasitoid population dynamical model to describe insect species". Numerical Methods for Partial Differential Equations. 37 (2): 1673-1692.

[3] G. M. Street and T. A. Laubach. (2013). "And So It Grows: Using a Computer-Based Simulation of a Population Growth Model to Integrate Biology & Mathematics". The American Biology Teacher. 75 (4): 274-279.

[4] A. M. Kramer and J. M. Drake. (2010). "Experimental demonstration of population extinction due to a predator-driven Allee effect". Journal Animal Ecology. 79 (3): 633-9.

[5] W. Wawan, M. Zuniati, and A. Setiawan. (2021). "Optimization of National Rice Production with Fuzzy Logic using Mamdani Method". Journal of Multidisciplinary Applied Natural Science. 1 (1): 36-43.

[6] T. Oluwafemi and E. Azuaba. (2022). "Impact of Hygiene on Malaria Transmission Dynamics: A Mathematical Model". Journal of Multidisciplinary Applied Natural Science. 2 (1): 1-9.

[7] T. Talaviya, D. Shah, N. Patel, H. Yagnik, and M. Shah. (2020). "Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides". Artificial Intelligence in Agriculture. 4 : 58-73.

[8] S. Kumar, R. Kumar, C. Cattani, and B. Samet. (2020). "Chaotic behaviour of fractional predator-prey dynamical system". Chaos, Solitons & Fractals. 135

[9] M. A. Idlango, J. J. Shepherd, L. Nguyen, and J. A. Gear. (2012). "Harvesting a logistic population in a slowly varying environment". Applied Mathematics Letters. 25 (1): 81-87.

[10] P. Miškinis and V. Vasiliauskienė. (2017). "The analytical solutions of the harvesting Verhulst’s evolution equation". Ecological Modelling. 360 : 189-193.

[11] M. A. Idlango, J. J. Shepherd, and J. A. Gear. (2015). "On the multiscale approximation of solutions to the slowly varying harvested logistic population model". Communications in Nonlinear Science and Numerical Simulation.26 (1-3): 36-44.

[12] L. K. J. Vandamme and P. R. F. Rocha. (2021). "Analysis and Simulation of Epidemic COVID-19 Curves with the Verhulst Model Applied to Statistical Inhomogeneous Age Groups". Applied Sciences. 11 (9).

[13] Mujib, Mardiyah, Suherman, R. Rakhmawati M, S. Andriani, Mardiyah, H. Suyitno, Sukestiyarno, and I. Junaidi. (2019). "The Application of Differential Equation of Verhulst Population Model on Estimation of Bandar Lampung Population". Journal of Physics: Conference Series. 1155

[14] A. Goswami, J. Singh, D. Kumar, and Sushila. (2019). "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma". Physica A: Statistical Mechanics and its Applications. 524 : 563-575.

[15] J. A. Sanders, F. Verhulst, and J. Murdock. (2007)." Averaging Methods in Nonlinear Dynamical Systems.

[16] A. Tsoularis and J. Wallace. (2002). "Analysis of logistic growth models". Mathematical in Biosciences. 179 (1): 21-55.

[17] R. M. May. (2019)." Stability and complexity in model ecosystems". Princeton university press.

[18] M. Cappelletti Montano and B. Lisena. (2021). "A diffusive two predators–one prey model on periodically evolving domains". Mathematical Methods in the Applied Sciences. 44 (11): 8940-8962.

[19] V. N. de Jonge, M. Elliott, and E. Orive. (2002). In: "Nutrients and Eutrophication in Estuaries and Coastal Waters, ch. Chapter 1". 1-19.

[20] H. S. Ayele and M. Atlabachew. (2021). "Review of characterization, factors, impacts, and solutions of Lake eutrophication: lesson for lake Tana, Ethiopia". Environmental Science and Pollution Research. 28 (12): 14233-14252.

[21] I. N. Rubin, Y. Ispolatov, and M. Doebeli. (2023). "Maximal ecological diversity exceeds evolutionary diversity in model ecosystems". Ecology Letters. 26 (3): 384-397.




How to Cite

A. Salim, A. Sulaiman, and M. Kenji, “An Analytic Solution to The Inhomogeneous Verhulst Equation Using Multiple Expansion Methods”, J. Multidiscip. Appl. Nat. Sci., vol. 3, no. 2, pp. 131-137, Apr. 2023.