Spatial Estimations of Suitable Intertidal Habitats for Conservations of Sea Urchin Community in Sancang Coast, West Java




Intertidal, GIS, sea urchin, spatial, suitability


The intertidal zone is an important habitat for marine organisms, including sea urchins. One of the potential intertidal zones is located on West Java's Sancang Coast. However, information about suitable habitats for sea urchins in this particular intertidal zone is still limited. Here, the spatial estimation of suitable habitats has been implemented aided by scoring, interpolation and overlay analysis of environmental variables and numbers of sea urchin individuals using Geographical Information Systems (GIS). Environmental variable measurements and sea urchin surveys were implemented using the belt transect method. The estimated habitats were located at the Ciporeang, Cikujangjambe and Cibako sites, representing the East, Middle and West sides of intertidal zones that have distinct environmental variables. Based on the results, there were three sea urchin species, with Stomopneustes variolaris having the highest abundance, followed by Heterocentrotus trigonarius, and the lowest one was Diadema setosum. Most species were recorded in Cibako. Correspondingly, the Cibako site has a larger zone classified as very high (70%) and highly suitable (30%) for sea urchins as characterized by seagrass and algae cover, low water temperature, high pH, and salinity parameters. On the contrary, more than 50% of the rocky Ciporeang site zones, with warmer water and low salinity and pH, are not suitable for sea urchins. Therefore, the conservation of the Sancang Coast's sea urchin community should prioritize Cibako sites.


[1] E. Elmasry, H. A. Omar, F. A. Abdel Razek, and M. A. El-Magd. (2013). "Preliminary studies on habitat and diversity of some sea urchin species (Echinodermata: Echinoidea) on the southern Levantine basin of Egypt". The Egyptian Journal of Aquatic Research. 39 (4): 303-311. 10.1016/j.ejar.2013.12.009.

[2] A. Ristanto. (2018). "Sea urchin (Echinoidea) distribution and abundance in the intertidal zone of Bengkayang Regency". Biosaintifika: Journal of Biology & Biology Education. 10 : 32–40. 10.15294/biosaintifika.v10i1.9763.

[3] R. N. Nisa and S. Bahri. (2022). "Diversitas Echinoidea (bulu babi) pada zona intertidal di kawasan Pantai Watu Leter Malang Selatan". BIOMETRIC. 1 (3). 

[4] D. Zulfadillah. (2021). "Community structure of seagrass field in litoral zone of Leweung Sancang Garut Nature Reserve". Jurnal Biologi Tropis. 21 : 526  10.29303/jbt.v21i2.2725.

[5] I. Bancin. (2020). "Diversitas gastropoda di perairan litoral Pantai Sancang Kabupaten Garut". JURNAL BIOSAINS.6 : 72. 10.24114/jbio.v6i3.17739.

[6] T. D. K. Pribadi. (2020). "Association of seagrass and echinodermata on the seagrass beds ecosystem Leuweung Natural Reserve, Sancang, West Java". Jurnal Kelautan. 13 (3): 176–184. 10.21107/jk.v13i3.7479.

[7] C. Raghunathan. (2013). "A Guide to Common Echinoderms of Andaman and Nicobar Islands". Zoological Survey of India, India.

[8] M. Meixler and M. Bain. (2012). "A GIS Framework for fish habitat prediction at the river basin scale". International Journal of Ecology. 10.1155/2012/146073.

[9] M. Boitt. (2021). "Identification and mapping of essential fish habitats using remote sensing and GIS on Lake Victoria, Kenya". Journal of Geoscience and Environment Protection. 9 : 91–109. 10.4236/gep.2021.910007.

[10] S. Matsiori. (2012). "Economic value of conservation. The case of the edible sea urchin Paracentrotus lividus". Journal of Environmental Protection and Ecology. 13 : 269–274.

[11] A. Bernal-Ibanez. (2021). "The role of sea-urchins in marine forests from Azores, Webbnesia, and Cabo Verde: human pressures, climate-change effects and restoration opportunities". Frontiers in Marine Science Section Marine Ecosystem Ecology.  10.3389/fmars.2021.6498.

[12] K. C. K. Ma, S. Redelinghuys, M. N. C. Gusha, S. B. Dyantyi, C. D. McQuaid, and F. Porri. (2021). "Intertidal estimates of sea urchin abundance reveal congruence in spatial structure for a guild of consumers". Ecology and Evolution. 11 (17): 11930-11944. 10.1002/ece3.7958.

[13] S. A. Murzina. (2021). "Lipids and fatty acids of the gonads of sea urchin Diadema setosum (Echinodermata) from the Coastal Area of the Nha Trang Bay, Central Vietnam". European Journal of Lipid Science and Technology. 123(7).  10.1002/ejlt.202000321.

[14] A. Ayyagari and R. B. Kondamudi. (2014). "Ecological significance of the association between Stomopneustes variolaris (Echinoidea) and Lumbrineris latreilli (Polychaeta) from Visakhapatnam Coast, India". Journal of Marine Biology. 1–4. 10.1155/2014/640785.

[15] W. Chanket and K. Wangkulangkul. (2019). "Role of the Sea Urchin Stomopneustes variolaris (Lamarck, 1816) Pits as a Habitat for Epilithic Macroinvertebrates on a Tropical Intertidal Rocky Shore". Zoological Science. 36 (4): 330-338. 10.2108/zs180196.

[16] M. Fortaleza. (2021). "Diversity of echinoderms in intertidal and shallow-water areas of Samal Island, Philippines". Philippine Journal of Science. 150 : 281–297.

[17] J. D. Allen. (2017). "The effects of salinity and pH on fertilization, early development, and hatching in the crown-of-thorns sea star". Diversity. 9 : 13. 10.3390/d9010013.

[18] K. N. Sato. (2018). "Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone". Frontiers Marine Science Section Global Change and the Future Ocean. 10.3389/fmars.2018.0025.

[19] S. A. Dworjanyn and M. Byrne. (2018). "Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming". Proceedings of the Royal Society B: Biological Sciences. 10.6084/m9.figshare.c.4041491.

[20] M. Stumpp, M. Y. Hu, F. Melzner, M. A. Gutowska, N. Dorey, N. Himmerkus, W. C. Holtmann, S. T. Dupont, M. C. Thorndyke, and M. Bleich. (2012). "Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification". The Proceedings of the National Academy of Sciences. 109 (44): 18192-7. 10.1073/pnas.1209174109.

[21] A. Hayati. (2017). "Water quality and fish diversity in the Brantas River, East Java, Indonesia". Journal of Biological Researches. 22 : 43–49. 10.23869/bphjbr.22.2.20172.

[22] B. Prihatiningsih. (2018). "Analysis of the distribution of domestic wastewater in the Brantas river area of Malang city". MATEC Web of Conferences. 195 : 05004. 10.1051/matecconf/201819505004.

[23] S. P. I. Arum. (2019). "Domestic wastewater contribution to water quality of Brantas River at Dinoyo Urban Village, Malang City". Indonesian Journal of Environment and Sustainable Development. 10 (2).  10.21776/ub.jpal.2019.010.02.02.

[24] P. J. Oberholster, A. M. Botha, L. Hill, and W. F. Strydom. (2017). "River catchment responses to anthropogenic acidification in relationship with sewage effluent: An ecotoxicology screening application". Chemosphere. 189 : 407-417. 10.1016/j.chemosphere.2017.09.084.




How to Cite

P. K. Suprapto, I. R. Husna, V. Meylani, and A. Wibowo, “Spatial Estimations of Suitable Intertidal Habitats for Conservations of Sea Urchin Community in Sancang Coast, West Java”, J. Multidiscip. Appl. Nat. Sci., vol. 3, no. 2, pp. 113-121, Feb. 2023.