Impact of Feed Point Position on Patch Antenna’s Return Loss and Bandwidth for UWB Applications




patch antenna, return loss, bandwidth, feed point position, HFSS, UWB, FR4, hybrid technique


The demand for compact, lightweight, and high-performance antennas has increased in recent times in the communication industry. Microstrip patch antenna (MPA) becomes a better choice to effectively fulfill these requirements. In this study, hybrid techniques of partial ground plane, slotted patch, and defective ground structure are employed in MPA design to reduce the return loss, good impedance matching, and increased the bandwidth, gain, and efficiency of the antenna. This research demonstrates the impact of altering the feed point position, a crucial phenomenon of antenna design, on the patch antenna and determines the proper feed point location by comparing a minimum return loss (S11) which achieves the highest performance for the designed antenna. High-frequency structure simulator (HFSS) software is used to design and simulate the patch antenna. The operating frequency of the antenna is 6.85 GHz for UWB applications (3.1–10.6 GHz). A FR4 epoxy substrate material with dimensions of 30 mm × 20 mm is used to design the antenna. It has a dielectric constant of 4.4, a thickness of 0.8 mm and a tangent loss of 0.02. Multiple resonant frequencies are observed with different return losses for each feed location. The analysis shows that the finest feeding point is found at the center of the patch (9, 0) with a very low return loss (-28.35 dB), and a high impedance bandwidth (19.7 GHz). The antenna also achieved a gain of 4.46 dB, a directivity of 4.6904 dB, and a radiation efficiency of 95.90%. Hence, the location of the feed point can be considered as an influential factor in the antenna design.


[1] S. M. Wentworth. (2005). "Fundamentals of Electromagnetics with Engineering Applications". John Wiley & Sons Incorporated.

[2] K. Guney and N. Sarikaya. (2007). "Adaptive neuro-fuzzy inference system for computing the resonant frequency of electrically thin and thick rectangular microstrip antennas". International Journal of Electronics. 94 (9): 833–844. 10.1080/00207210701526317.

[3] B. Abdennaceur and A. Badri. (2014). "Effect of Change in Feedpoint on the Antenna Performance in Edge, Probe and Inset-Feed Microstrip Patch Antenna". International Journal of Emerging Trends in Engineering and Development. 1 (4): 80–93.

[4] A. Vasekar and M. Mathpatti. (2018). "Effect of Feed Point Position on Metamaterial Based Patch Antenna". International Journal of Advanced Computational Engineering and Networking. 6 (7): 33–37.

[5] R. S. A. Kumar and J. Kaur. (2013). "Performance Analysis of Different Feeding Techniques". International Journal of Emerging Technology and Advanced. 3 (3). 

[6] K. S. Naik, S. Aruna, K. Y. K. G. R. Srinivasu, and D. S. Kiran. (2017). "Comparative Analysis of Rectangular Microstrip Patch Array Antenna with Different Feeding Techniques". the International Conference on Recent Advances and Future Trends in Information Technology.

[7] K. S. Fong, H. F. Pues, and M. J. Withers. (1985). "Wideband multilayer coaxial-fed microstrip antenna element". Electronics Letters. 21 (11): 497-499. 10.1049/el:19850352.

[8] Y. Gupta. (2014). "Stacked Microstrip Patch Antenna with Defected Ground Structures for WLAN and Wimax Applications". the 4th World Congress on Information and Communication Technologies (WICT 2014).

[9] L. I. Basilio, M. A. Khayat, J. T. Williams, and S. A. Long. (2001). "The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas". IEEE Transactions on Antennas and Propagation.49 (1): 45–47. 10.1109/8.910528.

[10] M. Civerolo and D. Arakaki. (2011). "Aperture coupled patch antenna design methods". IEEE Antennas and Propagation Society.  10.1109/APS.2011.5996415.

[11] G. Krishnaveni and B. Manimegalai. (2021). "Efficient and optimized design of a stacked patch microstrip antenna for next generation network applications". Journal of Ambient Intelligence and Humanized Computing. 12 (3): 4093–4099.

[12] D. Chatterjee and A. K. Kundu. (2017). "Performance analysis and comparative study of microstrip patch antenna using aperture coupled and proximity coupled feeding methodology". the International Conference on Computer, Communication, and Signal Processing.

[13] A. Mandal, A. Ghosal, A. Majumdar, A. Ghosh, A. Das, and S. K. Das. (2012). "Analysis of feeding techniques of rectangular microstrip antenna". the IEEE International Conference on Signal Processing, Communications and Computing.

[14] M. Biswas and M. Sen. (2019). "Fast and accurate model for a coax-fed rectangular patch antenna with varying aspect ratio, feed location and substrate electrical parameters". Journal of Electromagnetic Waves and Applications. 33 (4): 428–453. 10.1080/09205071.2018.1554512.

[15] P. Paul, J. S. Roy, and S. K. Chowdhray. (1996). "Effect of feed location on rectangular microstrip antenna at TM11 mode". Defence Science Journal. 46 (3): 127–134. 10.14429/dsj.46.4059.

[16] S. Stefanovski and B. Kolundzija. (2014). "The impedance variation with feed position of a microstrip line-fed patch antenna". Serbian Journal of Electrical Engineering. 11 (1): 85–96. 10.2298/SJEE131121008S.

[17] T. Divakar and D. C. Panda. (2014). "Finding Optimal Feed Location of a Microstrip Patch Antenna using HFSS". International Journal of Innovative Research In Electrical, Electronics, Instrumentation And Control Engineering.2 (10): 2143–2145. 10.17148/IJIREEICE.2014.21105.

[18] S. E. Jasim, M. A. Jusoh, M. H. Mazwir, and S. N. S. Mahmud. (2015). "Finding the best feeding point location of patch antenna using HFSS". ARPN Journal of Engineering and Applied Sciences. 10 (23): 17444–17449.

[19] M. B. Hossain, M. S. Hossain, M. M. Hossain, and M. D. Haque. (2020). "Optimization of the feeding point location of rectangular microstrip patch antenna". Advances in Science, Technology and Engineering Systems. 5(1): 382–386. 10.25046/aj050149.

[20] A. R. Celik. (2021). "Effects of the Feedline Position on Microstrip Patch Antenna Performance". Engineering and Technology Journal. 6 (12): 1084–1087. 10.47191/etj/v6i12.03.

[21] J. M. Mom and A. L. Tersoo. (2013). "Impact of Feed Point Location on the Bandwidth, Frequency and Return Loss of Rectangular Microstrip Patch Antenna". International Journal of Engineering Research and Technology. 2(9): 1612–1616. 10.5120/ijais13-451054.

[22] J. M. Môm, A. A. Roy, and D. T. Kureve. (2013). "Investigation of the Effect of Feed Variation on the Performance of a Circular Patch Microstrip Antenna". International Journal of Applied Information Systems. 6(5): 1–4.

[23] M. Alibakhshikenari, B. S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, and E. Limiti. (2021). "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network". IEEE Access. 9 67916–67927.

[24] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti. (2017). "New CRLH-based planar slotted antennas with helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF–SHF bands". Wireless Personal Communications. 92 (3): 1029–1038. 10.1007/s11277-016-3590-4.

[25] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti. (2016). "Miniature CRLH-based ultra-wideband antenna with gain enhancement for wireless communication applications". ICT Express. 2 (2): 75–79. 10.1016/j.icte.2016.04.001.

[26] M. Alibakhshikenari, B. S. Virdee, V. Vadalà, M. Dalarsson, M. E. Cos Gómez, A. G. Alharbi, S. N. Burokur, S. Aïssa, I. Dayoub, F. Falcone, and E. Limiti. (2022). "Broadband 3-D Shared Aperture High Isolation Nine-Element Antenna Array for On-Demand Millimeter-Wave 5G Applications". Optik. 267 : 169708. 10.1016/j.ijleo.2022.169708.

[27] M. Alibakhshikenari, B. S. Virdee, H. Benetatos, E. M. Ali, M. Soruri, M. Dalarsson, M. Naser-Moghadasi, C. H. See, A. Pietrenko-Dabrowska, S. Koziel, S. Szczepanski, and E. Limiti. (2022). "An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems". Scientific Reports. 12 (1): 7907. 10.1038/s41598-022-12119-2.

[28] M. Alibakhshikenari, B. S. Virdee, A. A. Althuwayb, L. Azpilicueta, N. O. Parchin, C. H. See, R. A. Abd-Alhameed, F. Falcone, I. Huynen, T. A. Denidni, and E. Limiti. (2021). "Bandwidth and gain enhancement of composite right left handed metamaterial transmission line planar antenna employing a non foster impedance matching circuit board". Scientific Reports. 11 (1): 7472. 10.1038/s41598-021-86973-x.

[29] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti. (2016). "Bandwidth extension of planar antennas using embedded slits for reliable multiband RF communications". AEU-International Journal of Electronics and Communications. 70 (7): 910–919. 10.1016/j.aeue.2016.04.003.

[30] M. Alibakhshi-Kenari, M. Naser-Moghadasi, R. A. Sadeghzadeh, B. S. Virdee, and E. Limiti. (2016). "A New Planar Broadband Antenna Based on Meandered Line Loops for Portable Wireless Communication Devices". Radio Science. 51 (7): 1109–1117. 10.1002/2016RS005973.

[31] M. Márton. (2017). "Design and Analysis of Microstrip Antenna for 2.46GHz in Program Suite FEKO". 31–34.

[32] M. Parihar. (2017). "Design of Bandwidth Enhanced Rectangular Microstrip Patch Antenna with Rectangular Slot using Partial Ground Plane Technique for UWB Applications". International Journal of Advance Engineering and Research Development. 4 (11): 79–82. 10.21090/IJAERD.99866.

[33] A. Viswanathan and R. Desai. (2014). "Applying Partial-Ground Technique to Enhance Bandwidth of a UWB Circular Microstrip Patch Antenna". International Journal of Scientific & Engineering Research. 5 (10): 780–784.

[34] M. K. Khandelwal, B. K. Kanaujia, and S. Kumar. (2017). "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends". International Journal of Antennas and Propagation. 10.1155/2017/2018527.

[35] B. G. Breed. (2008). In: " High frequency electronics". 1–3.

[36] A. Abderrahim. (2018). "Bandwidth Improvement of Microstrip Patch Antenna using DGS Technique Approved by supervising committee". Department of Electronics and Telecommunications, Université Kasdi Merbah Ouargla.

[37] S. Rana, A. Thakur, H. S. Saini, R. Kumar, and N. Kumar. (2016). "A wideband planar inverted F antenna for wireless communication devices". the International Conference on Advances in Computing, Communication and Automation.

[38] C. A. Balanis. (2016). "Theory, Analysis and Design". John Wily & Sons Inc, New York.




How to Cite

M. F. Ahmed, M. H. Kabir, and A. Z. M. T. Islam, “Impact of Feed Point Position on Patch Antenna’s Return Loss and Bandwidth for UWB Applications”, J. Multidiscip. Appl. Nat. Sci., vol. 4, no. 1, pp. 30-38, Jun. 2023.