Effective Recovery of Palladium(II) Ions using Chitosan-Based Adsorbent Material
DOI:
https://doi.org/10.47352/jmans.2774-3047.131Keywords:
adsorption, chitosan, palladium, recovery, selectiveAbstract
Chitosan is one of the naturally abundant, biodegradable, and low-cost adsorbent materials for metal adsorption purposes. In this work, we evaluated the application of chitosan materials derived from seafood wastes in Depok beach, Yogyakarta, for an effective recovery of the palladium(II) ions. First of all, the seafood wastes were treated to obtain chitin and then followed by the deacetylation process to produce chitosan material with a deacetylation degree of 78.42%. The chitosan material was characterized using Fourier transform infrared (FTIR) spectrophotometer. It was found that chitosan gave high adsorption percentage (90%) for palladium(II) ions due to the complexation with hydroxyl, amino and carbonyl functional groups. The palladium(II) adsorption onto chitosan material followed the pseudo-second-order (R2 = 0.9978) and Langmuir (R2 = 0.9979) models for kinetic and isotherm experiments, respectively, with a maximum adsorption capacity value of 0.70 mmol g-1. The palladium(II) ions could be easily desorbed in 90% percentage using 1.0 M HCl solution from metal-laden chitosan to regenerate the adsorbent material. The chitosan-based adsorbent material did not lose its adsorption capability after three consecutive cycles with no significant structural change as revealed from the FTIR data. These results showed the potential application of natural chitosan materials derived from seafood wastes for the effective recovery of palladium(II) ions.
References
[1] T. T. V. Phan, T. C. Huynh, P. Manivasagan, S. Mondal, and J. Oh. (2020). “An Up-To-Date Review on Biomedical Applications of Palladium Nanoparticles”. Nanomaterials. 10 (1): 66. 10.3390/nano10010066.
[2] A. Chen and C. Ostrom. (2015). “Palladium-based Nanomaterials: Synthesis and Electrochemical Applications”. Chemical Reviews. 115 (21): 11999-12044. 10.1021/acs.chemrev.5b00324.
[3] C. S. Brooks. (2018). “Metal Recovery from Industrial Waste”. CRC Press.
[4] O. Grad, M. Ciopec, A. Negrea, N. Duteanu, G. Vlase, P. Negrea, C. Dumitrescu, T. Vlase, and R. Voda. (2021). “Precious Metals Recovery from Aqueous Solutions using A New Adsorbent Material”. Scientific Reports. 11: 2016. 10.1038/s41598-021-81680-z.
[5] S. Sharma, A. S. K. Kumar, and N. Rajesh. (2017). “A Perspective on Diverse Adsorbent Materials to Recover Precious Palladium and The Way Forward”. RSC Advances. 7 (82): 52133-52142. 10.1039/C7RA10153H.
[6] R. R. Sathuluri, Y. S. Kurniawan, J. Y. Kim, M. Maeki, W. Iwasaki, S. Morisada, H. Kawakita, M. Miyazaki, and K. Ohto. (2018). “Droplet-based Microreactor System for Stepwise Recovery of Precious Metal Ions from Real Metal Waste with Calix[4]arene Derivatives”. Separation Science and Technology. 53 (8): 1261-1272. 10.1080/01496395.2017.1366518.
[7] K. T. A. Priyangga, Y. S. Kurniawan, L. Yuliati, B. Purwono, T. D. Wahyuningsih, and H. O. Lintang. (2021). “Novel Schiff Base Azo-Imine for Ultra-Sensitive and Highly Selective Fluorescent Chemosensor of Fe3+ Ions”. Luminescence: The Journal of Biological and Chemical Luminescence, 36 (5): 1239-1248. 10.1002/bio.4049.
[8] Y. S. Kurniawan, R. R. Sathuluri, W. Iwasaki, S. Morisada, H. Kawakita, K. Ohto, M. Miyazaki, and J. Jumina. (2018). “Microfluidic Reactor for Pb(II) Ion Extraction and Removal with Amide Derivative of Calix[4]arene Supported by Spectroscopic Studies”. Microchemical Journal. 142 : 377-384. 10.1016/j.microc.2018.07.001.
[9] K. T. A. Priyangga, Y. S. Kurniawan, and L. Yuliati. (2021). “Evaluation of C-arylcalix[4]resor-cinarenes as novel adsorbent materials: Effect on the nitro substituent on the Au(III) adsorption”. ChemistrySelect. 6 (21): 5366-5373. 10.1002/slct.202101067.
[10] A. M. Omer, R. Dey, A. S. Eltaweil, E. M. A. El-Monaem, and Z. M. Ziora. (2022). “Insights into Recent Advances of Chitosan-Based Adsorbents for Sustainable Removal of Heavy Metals and Anions”. Arabian Journal of Chemistry. 15 (2): 103543. 10.1016/j.arabjc.2021.103543.
[11] B. Junaidi, I. Kartini, and B. Rusdiarso. (2009). “Chitosan Preparation with Multistage Deacetylation of Chitin and Investigation of Its Physicochemical Properties”. Indonesian Journal of Chemistry. 9 : 369-372. 10.22146/ijc.21500.
[12] D. C. S. Alves, B. Healy, L. A. A. Pinto, T. R. S. Cadaval, and C. B. Breslin. (2021). “Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments”. Molecules. 26 (3): 594. 10.3390/molecules26030594.
[13] R. Permana and J. Junianto. (2021). “Potential Use of Modified Derivative of Chitin and Chitosan on Precious Metal Recovery: A Review”. Journal of Materials Science Research and Reviews. 7 : 14-24.
[14] Y. S. Kurniawan, K. T. A. Priyangga, P. A. Krisbiantoro, and A. C. Imawan. (2021). “Green Chemistry Influences in Organic Synthesis: A Review”. Journal of Multidisciplinary Applied Natural Sciences. 1 (1): 1–12. 10.47352/jmans.v1i1.2.
[15] G. K. Moore and G. A. F. Robert. (1980). “Determination of the Degree of N-Acetylation of Chitosan”. International Journal of Biological Macromolecular. 2 (2): 115-116. 10.1016/0141-8130(80)90040-9.
[16] F. Li, C. Bao, J. Zhang, Q. Sun, W. Kong, X. Han, and Y. Wang. (2009). “Synthesis of Chemically Modified Chitosan with 2,5‐Dimercapto‐1,3,4‐thiodiazole and Its Adsorption Abilities for Au(III), Pd(II), and Pt(IV)”. Journal of Applied Polymer Science. 113 (3): 1604-1610. 10.1002/app.30068.
[17] H. Sharififard, F. Z. Ashtiani, and M. Soleimani. (2012). “Adsorption of Palladium and Platinum from Aqueous Solutions by Chitosan and Activated Carbon Coated with Chitosan”. Asia-Pacific Journal of Chemical Engineering. 8 (3): 384-395. 10.1002/apj.1671.
[18] T. G. Asere, S. Mincke, K. Folens, F. V. Bussche, L. Lapeire, K. Verbeken, P. V. D. Voort, D. A. Tessema, G. D. Laing, and C. V. Stevens. (2019). “Dialdehyde Carboxymethyl Cellulose Cross-linked Chitosan for The Recovery of Palladium and Platinum from Aqueous Solution”. Reactive and Functional Polymers. 141 : 145-154. 10.1016/j.reactfunctpolym.2019.05.008.
[19] K. Fujiwara, A. Ramesh, T. Maki, H. Hasegawa, and K. Ueda. (2007). “Adsorption of Platinum(IV), Palladium(II) and Gold(III) from Aqueous Solutions onto L-lysine Modified Crosslinked Chitosan Resin”. Journal of Hazardous Materials. 146 (1–2): 39-50. 10.1016/j.jhazmat.2006.11.049.
[20] L. Zhou, J. Liu, and Z. Liu. (2009). “Adsorption of Platinum(IV) and Palladium(II) from Aqueous Solution by Thiourea-modified Chitosan Microspheres”. Journal of Hazardous Materials. 172 (1): 439-446. 10.1016/j.jhazmat.2009.07.030.
[21] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki, and K. Ueda. (2008). “Adsorption of Gold(III), Platinum(IV) and Palladium(II) Onto Glycine Modified Crosslinked Chitosan Resin”. Bioresource Technology. 99 (9): 3801-3809. 10.1016/j.biortech.2007.07.008.
[22] S. Y. Bratskaya, A. Y. Ustinov, Y. A. Azarova, and A. V. Pestov. (2011). “Thiocarbamoyl Chitosan: Synthesis, Characterization and Sorption of Au(III), Pt(IV), and Pd(II)”. Carbohydrate Polymers. 85 (4): 854-861. 10.1016/j.carbpol.2011.04.008.
[23] M. L. Arrascue, H. M. Garcia, O. Horna, and E. Guibal. (2003). “Gold Sorption on Chitosan Derivatives”. Hydrometallurgy. 71 (1–2): 191-200. 10.1016/S0304-386X(03)00156-7.
[24] Y. Kanai, T. Oshima, Y. Baba. (2008). “Synthesis of Highly Porous Chitosan Microspheres Anchored with 1,2-Ethylenedisulfide Moiety for The Recovery of Precious Metal Ions”. Industrial & Engineering Chemistry Research. 47 (9): 3114-3120. 10.1021/ie070235k.
[25] E. Guibal, N. V. O. Sweeney, T. Vincent, and J. M. Tobin. (2002). “Sulfur Derivatives of Chitosan for Palladium Sorption”. Reactive and Functional Polymers. 50 (2): 149-163. 10.1016/S1381-5148(01)00110-9.
[26] M. Ruiz, A. Sastre, and E. Guibal. (2002). “Pd and Pt Recovery using Chitosan Gel Beads. I. Influence of The Drying Process on Diffusion Properties”. Separation Science and Technology. 37 (1–2): 2143-2166. 10.1081/SS-120003506.
[27] P. Chassary, T. Vincent, J. S. Marcano, L. E. Macaskie, and E. Guibal. (2005). “Palladium and Platinum Recovery from Bicomponent Mixtures using Chitosan Derivatives”. Hydrometallurgy. 76 (1–2): 131-147. 10.1016/j.hydromet.2004.10.004.
[28] S. G. Kou, L. M. Peters, and M. R. Mucalo. (2021). “Chitosan: A Review of Sources and Preparation Methods”. International Journal of Biological Macromolecules. 169 : 85-94. 10.1016/j.ijbiomac.2020.12.005.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rokiy Alfanaar, Krisfian Tata Aneka Priyangga, Arif Cahyo Imawan, Jumina Jumina, Yehezkiel Steven Kurniawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
- Authors retain copyright and acknowledge that the Journal of Multidisciplinary Applied Natural Science is the first publisher, licensed under a Creative Commons Attribution 4.0 International License.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges and earlier and greater citation of published work.