Removal of Toxic Cations from Aqueous Solutions using Ginger Root Waste

Authors

  • Jude Chinedu Onwuka Department of Science Laboratory Technology, Federal University of Lafia, Lafia – 950101 (Nigeria); Department of Chemistry, Federal University of Lafia, Lafia – 950101 (Nigeria) https://orcid.org/0000-0003-2950-8273
  • Stephen Azubuike Igberi Department of Chemistry, Federal University of Lafia, Lafia – 950101 (Nigeria)
  • Timothy M. Akpomie Department of Chemistry, Federal University of Lafia, Lafia – 950101 (Nigeria)

DOI:

https://doi.org/10.47352/jmans.2774-3047.126

Keywords:

Ginger root waste, sorption, toxic cations, kinetics, thermodynamics

Abstract

Recently, the harmful impact of toxic metals in the aquatic environment cannot be over emphasized again. This work investigated the potential application of ginger root waste (GRW) to remove toxic cations (Cd2+ and Pb2+) from the aqueous medium. Batch adsorption examination was carried out as a function of sorbent dose, initial metal ion concentration, contact time, and temperature. The sorption equilibrium of the metal ions onto the GRW was subjected to Langmuir, Freundlich, Elovich and Redlich-Peterson isotherm models over concentration ranges of 10-50 mg/L. Sorption information was used for kinetic and thermodynamic modeling. The GRW materials before and after sorption was characterized using FTIR and SEM. Results showed higher removal percentage of Cd2+ over Pb2+ ions in all the factors studied. The Redlich – Peterson isotherm model affirmed that sorption of Cd2+ and Pb2+ occurred in a heterogenous surface of the sorbent which is strongly influenced by multiple micropores and caves. Kinetic studies revealed that the sorption was controlled through intra-particle diffusion model aided by surface and chemical reactions. Meanwhile, thermodynamic parameters indicated that the Cd2+ and Pb2+ sorption process was endothermic, however, non-spontaneous at temperature of 303 and 313 K. The FTIR and SEM data showed the evidence of successful sorption of the toxic cations on to the sorbent material.

References

[1] M. A. Barakat. (2011). “New trends in removing heavy metals from industrial wastewater”. Arabian Journal of Chemistry. 4 (4): 361–377. 10.1016/j.arabjc.2010.07.019.

[2] A. M. A. Al-Lami, S. R. Khudhaier, and O. A. Aswad. (2020). “Effects of heavy metals pollution on human health”. Annals of Tropical Medicine and Public Health. 23 (11): 10.36295/asro.2020.231125.

[3] S. Sharma, S. Rana, A. Thakkar, A. Baldi, R. S. R. Murthy, and R. K. Sharma. (2016). “Physical, Chemical and Phytoremediation Technique for Removal of Heavy Metals”. Journal of Heavy Metal Toxicity and Diseases. 1 (2): 20–28. 10.21767/2473-6457.100010.

[4] B. Bayat. (2002). “Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel(II), copper(II) and zinc(II)”. Journal of Hazardous Materials. 95 (3): 251–273. 10.1016/S0304-3894(02)00140-1.

[5] M. Iqbal and R. G. J. Edyvean. (2005). “Loofa sponge immobilized fungal biosorbent: A robust system for cadmium and other dissolved metal removal from aqueous solution”. Chemosphere. 61 (4): 510–518. 10.1016/j.chemosphere.2005.02.060.

[6] E. ul Islam, X. e. Yang, Z. li He, and Q. Mahmood. (2007). “Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops”. Journal of Zhejiang University. Science. B. 8 (1): 1–13. 10.1631/jzus.2007.B0001.

[7] D. C. K. Ko, J. F. Porter, and G. McKay. (2003). “Mass transport model for the fixed bed sorption of metal ions on bone char”. Industrial and Engineering Chemistry Research. 42 (14): 3458–3469. 10.1021/ie020505t.

[8] C. Garbisu and I. Alkorta. (2001). “Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment”. Bioresource Technology. 77 (3): 229–236. 10.1016/S0960-8524(00)00108-5.

[9] C. Gisbert, R. Ros, A. D. Haro, D. J. Walker, M. P. Bernal, R. Serrano, and J. N-Aviñó. (2003). “A plant genetically modified that accumulates Pb is especially promising for phytoremediation”. Biochemical and Biophysical Research Communications. 303 (2): 440–445. 10.1016/S0006-291X(03)00349-8.

[10] K. Kekpugile, D. D., and J. I. Ndaka. (2019). “Kinetic Study of Garlic and Ginger Particles in Adsorption of Heavy Metals in Aqueous Solution”. Chemical and Process Engineering Research. 60 (19): 136–141. 10.7176/cper/60-04.

[11] J. Salehzadeh. (2013). “Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum”. Leonardo Journal of Sciences. 12 (23): 97–104.

[12] N. D. Shooto, E. B. Naidoo, and M. Maubane. (2019). “Sorption studies of toxic cations on ginger root adsorbent”. Journal of Industrial and Engineering Chemistry. 76 (20): 133–140. 10.1016/j.jiec.2019.02.027.

[13] M. Uyttendaele, E. De Boeck, and L. Jacxsens. (2016). “Challenges in Food Safety as Part of Food Security: Lessons Learnt on Food Safety in a Globalized World”. Procedia Food Science. 6 : 16–22. 10.1016/j.profoo.2016.02.003.

[14] M. Mehra, B. Oinam, and C. K. Singh. (2016). “Integrated Assessment of Groundwater for Agricultural Use in Mewat District of Haryana, India Using Geographical Information System (GIS)”. Journal of the Indian Society of Remote Sensing. 44 (5): 747–758. 10.1007/s12524-015-0541-6.

[15] S. Bibi, R. L. Khan, R. Nazir, P. Khan, H. U. Rehman, S. K. Shakir, S. Naz, M. A. Waheed, and R. Jan. (2016). “Heavy metals analysis in drinking water of Lakki Marwat District, KPK, Pakistan”. World applied sciences journal. 34 (3): 15–19.

[16] M. J. Pawari and S. Gawade. (2015). “Ground water pollution and its consequnces”. International Journal of Engineering Research and General Science. 3 (2): 773–776.

[17] A. Afkhami, T. Madrakian, A. Amini, and Z. Karimi. (2008). “Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions”. Journal of Hazardous Materials. 150 (2): 408–412. 10.1016/j.jhazmat.2007.04.123.

[18] D. Kregiel. (2015). “Health safety of soft drinks: Contents, containers, and microorganisms”. BioMed Research International. 2015 (15): 10–15. 10.1155/2015/128697.

[19] I. Onimawo. (2019). “Determination of Proximate and Mineral Composition of Three”. ACTA science Nutritional Health. 3 (7): 111–114.

[20] I. G. Adanlawo and . F. A. S. D. (2006). “Nutrient and Anti-nutrient Constituents of Ginger (Zingiber officinale, Roscoe) and the Influence of its Ethanolic Extract on Some Serum Enzymes in Albino Rats”. International Journal of Biological Chemistry. 1 (1): 38–46. 10.3923/ijbc.2007.38.46.

[21] J. M. Jones. (2014). “CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’”. Nutrition Journal. 13 (1): 34. 10.1186/1475-2891-13-34.

[22] Z. Aly, A. Graulet, N. Scales, and T. Hanley. (2014). “Removal of aluminium from aqueous solutions using PAN-based adsorbents: characterisation, kinetics, equilibrium and thermodynamic studies”. Environmental Science and Pollution Research. 21 (5): 3972–3986. 10.1007/s11356-013-2305-6.

[23] J. X. Zhang and L. L. Ou. (2013). “Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells”. Water Science and Technology. 67 (4): 737–744. 10.2166/wst.2012.605.

[24] M. Belhachemi and F. Addoun. (2011). “Comparative adsorption isotherms and modeling of methylene blue onto activated carbons”. Applied Water Science. 1 (3–4): 111–117. 10.1007/s13201-011-0014-1.

[25] N. Ayawei, A. N. Ebelegi, and D. Wankasi. (2017). “Modelling and Interpretation of Adsorption Isotherms”. Journal of Chemistry. 2017 (17): 11–15. 10.1155/2017/3039817.

[26] O. K. Amadi, C. J. Odidizor, and I. A. Okoro. (2017). “sorption kinetic and intraparticle diffusivities of As 3+ and Hg 2+ Detoxification from Aqueous Solution Using Cellulosic Biosorbent Derived from Okra (Abelmoschus eaculentus) Stems”. International Journal of Engineering Systems (IJEAIS). 1 (8): 75–85.

[27] J. C. Onwuka, E. B. Agbaji, V. O. Ajibola, and F. G. Okibe. (2016). “Kinetic studies of surface modification of lignocellulosic Delonix regia pods as sorbent for crude oil spill in water”. Journal of Applied Research and Technology. 14 (6): 415–424. 10.1016/j.jart.2016.09.004.

[28] P. Kampalanonwat and P. Supaphol. (2014). “The study of competitive adsorption of heavy metal ions from aqueous solution by aminated polyacrylonitrile nanofiber mats”. Energy Procedia. 56 (C): 142–151. 10.1016/j.egypro.2014.07.142.

[29] G. Vijayakumar, R. Tamilarasan, and M. Dharmendirakumar. (2012). “Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite”. Journal of Materials and Environmental Science. 3 (1): 157–170.

[30] H. Karimi (2017). “Effect of pH and Initial pb(II) Concentration on The Lead Removal Efficiency from Industrial Wastewater Using Ca(OH)2”. International Journal of Water and Wastewater Treatment. 3 (2): 2381–5299. 10.16966/2381-5299.139.

[31] N. Amadou, E. Richard, N. Waingeh, I. Hélène, Y. Ndombow, and K. Jules-Roger. (2017). “Physicochemical and Sensory Properties of Ginger Spiced Yoghurt”. Journal of Nutritional Therapeutics. 6 (3): 68–74. 10.6000/1929-5634.2017.06.03.2.

[32] J. N. Egila, B. E. N. Dauda, and T. Jimoh. (2010). “Biosorptive removal of cobalt (II) ions from aqueous solution by Amaranthus hydridus L. stalk wastes”. African Journal of Biotechnology. 9 (48): 8192–8198. 10.5897/AJB10.1365.

[33] M. B. Desta. (2013). “Batch sorption experiments: Langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (eragrostis tef) agricultural waste”. Journal of Thermodynamics. 1 (1): 6–10. 10.1155/2013/375830.

[34] G. G. Kusse, M. Zewde, and A. A. Yoseph. (2019). “Determination of concentration of heavy metals in ginger using flame atomic absorption spectroscopy”. African Journal of Plant Science. 13 (6): 163–167. 10.5897/ajps2019.1787.

[35] R. Ahmad. (2009). “Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP)”. Journal of Hazardous Materials. 171 (1–3): 767–773. 10.1016/j.jhazmat.2009.06.060.

[36] H. Tounsadi, A. Khalidi, M. Abdennouri, and N. Barka. (2015). “Biosorption potential of Diplotaxis harra and Glebionis coronaria L. biomasses for the removal of Cd(II) and Co(II) from aqueous solutions”. Journal of Environmental Chemical Engineering. 3 (2): 822–830. 10.1016/j.jece.2015.03.022.

[37] K. M. S. Surchi. (2011). “Agricultural Wastes as Low Cost Adsorbents for Pb Removal: Kinetics, Equilibrium and Thermodynamics”. International Journal of Chemistry. 3 (3): 103–112. 10.5539/ijc.v3n3p103.

[38] T. Jimoh, J. N. Egila, B. E. N. Dauda, and Y. A. Iyaka. (2011). “Preconcentration and removal of heavy metal ions from aqueous solution using modified charcoal”. Journal of Environmental Chemistry and Ecotoxicology. 3 (9): 238–243.

[39] L. Xu, X. Zheng, H. Cui, Z. Zhu, J. Liang, and J. Zhou. (2017). “Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash”. Bioinorganic Chemistry and Application. 2017 : 1–9. 10.1155/2017/3695604.

[40] H. K. Boparai, M. Joseph, and D. M. O’Carroll. (2011). “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles”. Journal of Hazardous Materials. 186 (1): 458–465. 10.1016/j.jhazmat.2010.11.029.

[41] A. Achmad, J. Kassim, T. K. Suan, R. C. Amat, and T. L. Seey. (2012). “Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye onto a novel green adsorbent developed from Uncaria gambir extract”. Journal of Physical Science. 23 (1): 1–13.

[42] V. C. Srivastava, I. D. Mall, and I. M. Mishra. (2008). “Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash”. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 312 (2–3): 172–184. 10.1016/j.colsurfa.2007.06.048.

[43] F. C. Wu, B. L. Liu, K. T. Wu, and R. L. Tseng. (2010). “A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes”. Chemical Engineering Journal. 162 (1): 21–27. 10.1016/j.cej.2010.03.006.

[44] F. Gimbert, N. Morin-Crini, F. Renault, P. M. Badot, and G. Crini. (2008). “Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: Error analysis”. Journal of Hazardous Materials. 157 (1): 34–46. 10.1016/j.jhazmat.2007.12.072.

[45] F. Batool, J. Akbar, S. Iqbal, S. Noreen, and S. N. A. Bukhari. (2018). “Study of Isothermal, Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis”. Bioinorganic Chemistry and Applications. 2018 (8): 205–212. 10.1155/2018/3463724.

[46] J. Twisk. (2010). “Basic statistical methods 4th ed”. Harper and Row, New York. 10.1093/acprof:oso/9780199561629.003.03.

[47] S. Arivoli, V. Marimuthu, and A. R. M. Jahangir. (2013). “Kinetics of batch adsorption of iron (II) ions from aqueous solution using activated carbon from Strychnos nux-vomica L”. International Journal of Scientific & Engineering Research. 4 (12): 407–417.

[48] B. Li, F. Zhou, K. Huang, Y. Wang, S. Mei, Y. Zhou, and T. Jing. (2016). “Highly efficient removal of lead and cadmium during wastewater irrigation using a polyethylenimine-grafted gelatin sponge”. Scientific Reports. 6 (16): 573–581. 10.1038/srep33573.

[49] M. R. Kulkarni, T. Revanth, A. Acharya, and P. Bhat. (2017). “Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study”. Resource-Efficient Technologies. 3 (1): 71–77. 10.1016/j.reffit.2017.01.009.

[50] G. M. Al-Senani and F. F. Al-Fawzan. (2018). “Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs”. Egyptian Journal of Aquatic Research. 44 (3): 187–194. 10.1016/j.ejar.2018.07.006.

[51] K. L. Wasewar. (2010). “Adsorption of metals onto tea factory waste: A review”. Ijrras. 3 (3): 303–322.

[52] H. S. Mohamed, N. K. Soliman, D. A. Abdelrheem, A. A. Ramadan, A. H. Elghandour, and S. A. Ahmed. (2019). “Adsorption of Cd 2+ and Cr 3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent”. Heliyon. 5 (3): 106–111. 10.1016/j.heliyon.2019.e01287.

[53] R. Ahmad and S. Haseeb. (2016). “Kinetic, isotherm and thermodynamic studies for the removal of Pb2+ ion by a novel adsorbent Luffa acutangula (LAPR)”. Desalination and Water Treatment. 57 (38): 17826–17835. 10.1080/19443994.2015.1088476.

[54] K. A. Rahman, W. S. Loh, and K. C. Ng. (2013). “Heat of adsorption and adsorbed phase specific heat capacity of methane/activated carbon system”. Procedia Engineering. 56 (13): 118–125. 10.1016/j.proeng.2013.03.097.

[55] Y. T. Gebreslassie. (2020). “Equilibrium, Kinetics, and Thermodynamic Studies of Malachite Green Adsorption onto Fig (Ficus cartia) Leaves”. Journal of Analytical Methods in Chemistry. 2020 : 103–108. 10.1155/2020/7384675.

[56] M. J. Keenan, J. Zhou, M. Hegsted, C. Pelkman, H. A. Durham, D. B. Coulon, and R. J. Martin. (2015). “Role of resistant starch in improving gut health, adiposity, and insulin resistance”. Advances in Nutrition. 6 (2): 198–205. 10.3945/an.114.007419.

[57] K. A. Steinmetz and J. D. Potter. (1996). “Vegetables, Fruit, and Cancer Prevention”. Journal of the American Dietetic Association. 96 (10): 1027–1039. 10.1016/S0002-8223(96)00273-8.

[58] M. A. Njoki, G. Mercy, G. Nyagah, and A. Gachanja. (2016). “Fourier Transform Infrared Spectrophotometric Analysis of Functional Groups found in Ricinus Communis L. and Cucurbita Maxima Lam. Roots, Stems and Leaves as Heavy Metal Adsorbents”. International Journal of Science. 5 (3): 861–871.

[59] C. E. Osakwe, I. Sanni, S. Sa’id, and A. Zubairu. (1997). “Adsorption of Heavy Metals from Wastewaters Using Adonosia digitata Fruit Shells and Theobroma cacao Pods as Adsorbents: A Comparative Study”. Au Journal of Technology. 18 (1): 11–18.

[60] M. H. Gohil and S. J. Verma. (2012). “Scanning electron microscopy study to analyze the morphological characteristics of root surfaces after application of Carisolv gel in association with scaling and root planing: In vitro study”. Journal of Indian Society of Periodontology. 16 (3): 329–332. 10.4103/0972-124X.100906.

Downloads

Published

2022-06-14

How to Cite

[1]
J. C. Onwuka, S. A. Igberi, and T. M. Akpomie, “Removal of Toxic Cations from Aqueous Solutions using Ginger Root Waste”, J. Multidiscip. Appl. Nat. Sci., vol. 2, no. 2, pp. 115-130, Jun. 2022.