Relationship of Quantitative Traits in Different Morphological Characters of Pea (Pisum Sativum L.)


  • Sarah Tasnim Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1700 (Bangladesh); Department of Crop Genetics and Plant Breeding, Institute of Crop Science, Beijing-100081 (China)
  • Nilufa Yasmin Poly Department of Biochemistry and Molecular Biology, Khulna Agricultural University, Khulna-9208 (Bangladesh)
  • Nusrat Jahan Department of Plant Pathology, Sylhet Agricultural University, Sylhet-3100 (Bangladesh)
  • Ahasan Ullah Khan Department of Entomology, Sylhet Agricultural University, Sylhet-3100 (Bangladesh); Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet-3100 (Bangladesh)



Pea, Pisum sativum, plant height, flower, pod, seed, PVC, GCV


An experiment was undertaken to elucidate the genetic relationship between different quantitative traits for commercial cultivation and to evaluate selection criteria in pea breeding programs in five inbred parents. Their 17 F4’s derivatives in pea (Pisum sativum L.) evaluated ten characters during the winter season (November to February) of 2017-18 at the research farm, BSMRAU, Gazipur, Bangladesh. Analysis of variance explored significant differences among the genotypes for all the characters.  Phenotypic coefficients of variation (PCV) were close to genotypic coefficients of variation (GCV) for all the characters indicating less influence on the environment and potentiality of selection. A high heritability relationship with high genetic advance was observed for plant height, pod per plant, hundred seed weight, and seed yield per plot. Pod length showed a highly significant positive correlation with pod width and hundred seeds weight. Only days to first flowering showed a highly negative correlation with pod length and hundred seed weight. Path coefficient analysis revealed that plant height, pod per plant, and seeds per pod had a highly positive effect on yield per plant. Therefore, associating and selecting those traits, yield improvement must be possible in pea, and the days to maturity, plant height, pods per plant, pod length, and seed showed a considerable positive and highly significant correlation with plant height, pod per plant, seed per pod, and yield per plant at both genotypic and phenotypic levels indicating yield could be increased with the increase of days to maturity, plant height, pods per plant, pod length, and seed.


[1] M. M. Praça-Fontes, C. R. Carvalho, and W. R. Clarindo. (2014). “Karyotype revised of Pisum sativum using chromosomal DNA amount”. Plant Systematics and Evolution. 300 (7): 1621–1626. 10.1007/s00606-014-0987-y.

[2] T. H. N. Ellis, J. M. I. Hofer, G. M. Timmerman-Vaughan, C. J. Coyne, and R. P. Hellens. (2011). “Mendel, 150 years on”. Trends in Plant Science. 16 (11): 590–596. 10.1016/j.tplants.2011.06.006.

[3] A. K. Parihar, G. P. Dixit, A. Bohra, D. Sen Gupta, Anil K. Singh, Nitin Kumar, D. Singh, and N. P. Singh. (2020). In: “S. S. Goal and S. H. Wani (eds) Accelerated Plant Breeding, Volume 3”. Cham: Springer International Publishing. 283–341. 10.1007/978-3-030-47306-8_10.

[4] D. Rubiales, M. J. González-Bernal, T. Warkentin, R. Bueckert, M. C. Vaz Patto, and K. McPhee. (2019). In: “G. Hochmuth (ed) Advances in Pea Breeding”. Burleigh Dods Science Publishing, Cambridge. 575–606. 10.19103/AS.2019.0045.28.

[5] X. Sun, T. Yang, J. Hao, X. Zhang, R. Ford, J. Jiang, F. Wang, J. Guan, and X. Zong. (2014). “SSR genetic linkage map construction of pea (Pisum sativum L.) based on Chinese native varieties”. The Crop Journal. 2 (2–3): 170–174. 10.1016/j.cj.2014.03.004.

[6] A. B. Hassan, G. A. M. Osman, M. A. H. Rushdi, M. M. Eltayeb, and E. E. Diab. (2009). “Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and sorghum (Sorghum bicolor) grains”. Pakistan Journal of Nutrition. 8 (2): 167–171. 10.3923/pjn.2009.167.171.

[7] J. Liu, M. Klebach, M. Visser, and Z. Hofman. (2019). “Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial”. Nutrients. 11 (11): 2613. 10.3390/nu11112613.

[8] L. Herreman, P. Nommensen, B. Pennings, and M. C. Laus. (2020). “Comprehensive overview of the quality of plant‐ And animal‐sourced proteins based on the digestible indispensable amino acid score”. Food Science & Nutrition. 8 (10): 5379–5391. 10.1002/fsn3.1809.

[9] S. Pathak and R. S. Jamwal. (2002). “Variability and correlations for economic traits in powdery mildew resistant genotypes of garden pea (Pisum sativum L.)”. Himachal Journal of Agricultural Research. 28 (1): 34–39.

[10] R. R. Sureja, A. K. and Sharma. (2000). “Genetic variability and heritability studies in garden pea”. Indian Journal of Horticulture. 57. 243–247.

[11] R. C. Mahajan, P. B. Wadikar, S. P. Pole, and M. V Dhuppe. (2011). “Variability , Correlation and Path Analysis Studies in Sorghum”. Research Journal of Agricultural Science. 2 (1): 101–103.

[12] A. A. Hamed, A. H. Hussein, and E. M. Khalil. (2015). “Genetic Studies on Some Quantitative Traits in Pea 1. Inheritance of Vegetative Characters, Yield and Its Components”. Egyptian Journal of Agricultural Research. 93 (4): 1211–1229. 10.21608/ejar.2015.157056.

[13] A. El-Dakkak. (2016). “Genetic Improvement for Yield and Quality Characters in Pea By Using Selection”. Journal of Plant Production. 7 (8): 837–842. 10.21608/jpp.2016.46191.

[14] R. Galal, A. Mohamed, and E. Ismail. (2018). “Genetic Analysis of some Crosses for Yield and its Components and Earliness in Pea (Pisum sativum L.)”. Egyptian Journal of Horticulture. 46 (1): 1–11. 10.21608/ejoh.2018.5743.1083.

[15] H. S. Askander and K. F. Osman. (2018). “Heterosis and Combining Ability Effects for Some Traits of Pea (Pisum sativum L.)”. Mesopotamia Journal of Agriculture. 46 (4): 435–450. 10.33899/magrj.2018.161516.

[16] A. Sinjushin, E. Semenova, and M. Vishnyakova. (2022). “Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia”. Agronomy. 12 (3): 544. 10.3390/agronomy12030544.

[17] G. A. Zayed, F. A. Helal, and S. T. Farag. (2005). “The genetic performance of some continuously variable characteristics of pea under different locations”. Annals of Agricultural Science, Moshtohor. 43 (1): 349–358.

[18] J. Gnanasekaran and S. Padmavathi. (2017). “Studies on heterosis and combining ability in cotton (gossypium hirsutum l.)”. Plant Archives. 17 (1): 594–596.

[19] S. El Hanafi, S. Cherkaoui, Z. Kehel, M. Sanchez-Garcia, J.-B. Sarazin, S. Baenziger, and W. Tadesse. (2022). “Hybrid Seed Set in Relation with Male Floral Traits, Estimation of Heterosis and Combining Abilities for Yield and Its Components in Wheat (Triticum aestivum L.)”. Plants. 11 (4): 508. 10.3390/plants11040508.

[20] A. H. Hussein. (2009). “Genetic Behaviour of Some Quantitative Pea Traits Under Southern Egypt Conditions”. Minufiya Journal of Agricultural Research. 34 (4): 1601–1612.

[21] H. Suman, B. Kumar, N. eshwar, M. Rathi, and D. Tamatam. (2017). “Heterosis and Combining Ability for Grain Yield and Yield Associated Traits in 10 X 10 Diallel Analysis in Pea (Pisum sativum L.)”. International Journal of Current Microbiology and Applied Sciences. 6 (12): 1574–1585. 10.20546/ijcmas.2017.612.177.

[22] B. Manjunath, D. raju, V. Srinivasa, M. Hanumantappa, D. Lakshmana, and T. S. Aghora. (2020). “Combining Ability Studies for Yield and Yield Contributing Traits in Garden Pea (Pisum sativum L.)”. International Journal of Current Microbiology and Applied Sciences. 9 (11): 3261–3268. 10.20546/ijcmas.2020.911.391.

[23] H. S. Askander, P. A. Abdullah, and R. I. S. Abdulrahman. (2018). “Estimation Some Genetic Parameters, Combining Ability and Heterosis in Pea (Pisum Sativum) Using Half Diallel Cross”. The Journal of The University of Duhok. 21 (1): 19–28. 10.26682/avuod.2019.21.1.3.

[24] N. Shilpashree, S. N. Devi, D. C. Manjunathagowda, A. Muddappa, S. A. M. Abdelmohsen, N. Tamam, H. O. Elansary, T. K. Z. El-Abedin, A. M. M. Abdelbacki, and V. Janhavi. (2021). “Morphological Characterization, Variability and Diversity among Vegetable Soybean (Glycine max L.) Genotypes”. Plants. 10 (4): 671. 10.3390/plants10040671.

[25] C. H. Hanson, H. F. Robinson, and R. E. Comstock. (1956). “ Biometrical Studies of Yield in Segregating Populations of Korean Lespedeza 1”. Agronomy Journal. 48 (6): 268–272. 10.2134/agronj1956.00021962004800060008x.

[26] M. Shaheen, H. Abdul Rauf, M. A. Taj, M. Yousaf Ali, M. A. Bashir, S. Atta, H. Farooq, R. A. Alajmi, M. Hashem, and S. Alamri. (2021). “Path analysis based on genetic association of yield components and insects pest in upland cotton varieties”. PLOS ONE. 16 (12): e0260971. 10.1371/journal.pone.0260971.

[27] M. M. H. Khan, M. Y. Rafii, S. I. Ramlee, M. Jusoh, and M. Al Mamun. (2022). “Path-coefficient and correlation analysis in Bambara groundnut (Vigna subterranea [L.] Verdc.) accessions over environments”. Scientific Reports. 12 (1): 10.1038/s41598-021-03692-z.

[28] P. Gudadinni, V. Bahadur, P. Ligade, S. E. Topno, and V. M. Prasad. (2017). “Study on Genetic Variability, Heritability and Genetic Advance in Garden Pea (Pisum sativum var. hortense L.)”. International Journal of Current Microbiology and Applied Sciences. 6 (8): 2384–2391. 10.20546/ijcmas.2017.608.282.

[29] T. M. Lagiso, B. C. S. Singh, and B. Weyessa. (2021). “Evaluation of sunflower (Helianthus annuus L.) genotypes for quantitative traits and character association of seed yield and yield components at Oromia region, Ethiopia”. Euphytica. 217 (2): 27. 10.1007/s10681-020-02743-2.

[30] A. Singh, G. Lavanya, and Roopa. (2014). “Character association studies in field pea (Pisum sativum L.)”. Technology and Sciences Indian Journals. 1 : 51–53.

[31] J. Motte, R. Tyler, A. Milani, J. Courcelles, and T. Der. (2021). “Pea and lentil flour quality as affected by roller milling configuration”. Legume Science. 3 (4): 10.1002/leg3.97.

[32] M. W. Riaz, L. Yang, M. I. Yousaf, A. Sami, X. D. Mei, L. Shah, S. Rehman, L. Xue, H. Si, and C. Ma. (2021). “Effects of Heat Stress on Growth, Physiology of Plants, Yield and Grain Quality of Different Spring Wheat (Triticum aestivum L.) Genotypes”. Sustainability. 13 (5): 2972. 10.3390/su13052972.

[33] A. Siddika, A. K. M. Aminul-Islam, M. G. Rasul, M. A. Khaleque, and J. Uddin-Ahmed. (2013). “Genetic variability in advanced generations of vegetable pea (Pisum sativum L.)”. International Journal of Plant Breeding. 7 (2): 124–128.

[34] A. K. Sharma, S. P. Singh, and M. K. Sarma. (2003). “Genetic variability, heritability and character association in pea (Pisum sativum L.)”. Crop Research-Hisar-. 26 (1): 135–139.

[35] A. U. Khan, M. A. R. Choudhury, J. Ferdous, M. S. Islam, and M. S. Rahaman. (2019). “Varietal Performances of Country Beans Against Insect Pests in Bean Agroecosystem”. Bangladesh Journal of Entomology. 29 (August 2020): 27–37.

[36] A. U. Khan, M. A. R. Choudhury, M. S. Islam, M. A. Maleque, and M. S. Islam. (2018). “Abundance and Fluctuation Patterns of Insect Pests in Country Abundance and Fluctuation Patterns of Insect Pests in Country Bean”. Journal of the Sylhet Agricultural University. 5 (2): 167–172.

[37] G. Gayacharan, K. Tripathi, M. S. Aski, N. Singh, A. Kumar, and H. Lal. (2022). “Understanding genetic diversity in blackgram [Vigna mungo (L.) Hepper] collections of Indian National Genebank.” Genetic Resources and Crop Evolution. 69 (3): 1229–1245. 10.1007/s10722-021-01301-6.

[38] A. S. Karyawati and E. S. V. Puspitaningrum. (2021). “Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean”. Biodiversitas Journal of Biological Diversity. 22 (3). 10.13057/biodiv/d220309.

[39] G. Tiwari and G. Lavanya. (2012). “Genetic variability, character association and component analysis in F4 generation of fieldpea (Pisum sativum var. arvense L.)”. Karnataka Journal of Agricultural Sciences. 25 (2): 173–175.

[40] A. U. Khan, M. A. R. Choudhury, C. K. Dash, U. H. S. Khan, and M. Ehsanullah. (2020). “Insect Pests of Country Bean and Their Relationships With Temperature”. Bangladesh Journal of Ecology. 2 (July): 43–46.

[41] A. U. Khan, M. A. R. Choudhury, M. S. A. Talucder, M. S. Hossain, S. Ali, T. Akter, and M. Ehsanullah. (2020). “Constraints and solutions of country bean (Lablab purpureus L.) Production: A review”. Acta Entomology and Zoology. 1 (2): 37–45. 10.33545/27080013.2020.v1.i2a.17.

[42] J. Hagenblad, E. Boström, L. Nygårds, and M. W. Leino. (2014). “Genetic diversity in local cultivars of garden pea (Pisum sativum L.) conserved ‘on farm’ and in historical collections”. Genetic Resources and Crop Evolution. 61 (2): 413–422. 10.1007/s10722-013-0046-5.

[43] A. S. Tanni, M. A. Maleque, M. A. R. Choudhury, A. U. Khan, and U. H. S. Khan. (2019). “Evaluation of Promising Exotic Okra Genotypes to Select Breeding Materials for Developing Pest Resistant High Yielding Okra Variety”. Bangladesh Journal of Entomology. 29 (1): 17–26.

[44] J. M. Goulart, J. G. M. Guerra, J. A. A. Espindola, E. da S. Araújo, and J. R. Rouws. (2021). “Shrub legume green manure intercropped with maize preceding organic snap bean cultivation”. Horticultura Brasileira. 39 (3): 319–323. 10.1590/s0102-0536-20210312.




How to Cite

S. Tasnim, N. Y. Poly, N. Jahan, and A. U. Khan, “Relationship of Quantitative Traits in Different Morphological Characters of Pea (Pisum Sativum L.)”, J. Multidiscip. Appl. Nat. Sci., vol. 2, no. 2, pp. 103-114, Apr. 2022.