Antagonism Activity of Phosphate Solubilizing Bacteria Against Ganoderma philippii and Fusarium oxysporum of Acacia Plants


  • Muhammad Asril Department of Biology, Institut Teknologi Sumatera, Bandar Lampung-35365 (Indonesia)
  • Yuni Lisafitri Department of Environmental Engineering, Institut Teknologi Sumatera, Bandar Lampung-35365 (Indonesia)
  • Bayo Alhusaeri Siregar Department of Plant Protection, PT. Arara Abadi Sinar Mas Forestry, Riau-28685 (Indonesia)



acacia, F. oxysporum, G. philippii, plant growth-promoting bacteria, phosphate solubilizing bacteria


Ganoderma philippii and Fusarium oxysporum 0148c are the primary pathogenic fungi that causes root rot and damping-off in young acacia plants. The best treatment to date is the use of biological control agents. Phosphate solubilizing bacteria (PSB) isolated from acid soil is a bacterial isolate classified as plant growth-promoting bacteria (PGPB). PGPB has an indirect function as a biocontrol agent for fungal pathogens. This study aimed to determine the potential of PSB isolate EF.NAP 8 in inhibiting G. philippii and F. oxysporum 0148c from acacia plants. The method used is a dual culture antagonism test and observation of abnormal hyphae after the antagonism process. The results showed that the isolate EF.NAP 8 inhibited G. philippii by 34.44% and F. oxysporum 0148c by 33.33%. The abnormality of hyphae after antagonistic activity results in hyphal malformations such as hyphae lysis and hyphae coiling. The antagonistic activity of PSB EF.NAP 8 isolate is one of part of the ability of a bacterium classified as PGPB in the form of biocontrol activity against pathogenic fungi. This provides information regarding the opportunity to utilize EF.NAP 8 as a candidate agent for controlling fungal pathogens on acacia plants.


[1] W. Gill, A. Eyles, M. Glen, and C. Mohammed. (2016). “Structural host responses of Acacia mangium and Eucalyptus pellita to artificial infection with the root rot pathogen, Ganoderma philippii”. Forest Pathology. 46 (4): 369–375. 10.1111/EFP.12286.

[2] M. Mardhiansyah. (2011). “Potensi pengendalian Trichoderma spp. terhadap Ganoderma sp. di pertanaman Acacia mangium umur enam bulan”. SAGU. 10 (1): 29–34.

[3] D. Puspitasari, A. Rimbawanto, and N. Hidayati. (2009). “Karakterisasi morfologi dan verifikasi DNA Ganoderma philippii penyebab busuk akar Acacia mangium”. Jurnal Pemuliaan Tanaman Hutan. 3 (2): 83–94.

[4] S. Soleha, A. Muslim, S. Suwandi, K. Sabaruddin, and P. Rahmat. (2021). “The identification and pathogenicity of Fusarium oxysporum causing acacia seedling wilt disease”. Journal of Forestry Research. 1–9. 10.1007/s11676-021-01355-3.

[5] J. T. Dobbs, M.-S. Kim, N. S. Dudley, N. B. Klopfenstein, A. Yeh, R. D. Hauff, T. C. Jones, R. K. Dumroese, P. G. Cannon, and J. E. Stewart. (2020). “Whole genome analysis of the koa wilt pathogen (Fusarium oxysporum f. sp. koae) and the development of molecular tools for early detection and monitoring”. BMC Genomics. 21 (1): 1–15. 10.1186/S12864-020-07156-Y.

[6] S. Kapoor, N. Harsh, and S. Sharma. (2004). “A new wilt disease of Acacia nilotica caused by Fusarium oxysporum”. Journal of Tropical Forest Science. 16 (4): 453–462.

[7] S. M. Widyastuti, S. Tasik, and H. Harjono. (2013). “Infection process of Fusarium oxysporum fungus: a cause of damping-off on Acacia mangium’s seedlings”. AGRIVITA, Journal of Agricultural Science. 35 (2): 110–118. 10.17503/AGRIVITA.V35I2.275.

[8] I. Prihatini, A. Rimbawanto, D. Puspitasari, and D. Fauzi. (2018). “Pengujian penanda jenis spesifik pada jamur yang berpotensi sebagai agens pengendali hayati penyakit busuk akar pada akasia”. Jurnal Pemuliaan. 12 (1): 1–11. 10.20886/JPTH.2018.12.1.1-11.

[9] W. Korichi, M. Ibrahimi, S. Loqman, Y. Ouhdouch, K. Younes, and L. Lemée. (2021). “Assessment of actinobacteria use in the elimination of multidrug-resistant bacteria of Ibn Tofail hospital wastewater (Marrakesh, Morocco): a chemometric data analysis approach”. Environmental science and pollution research international. 28 (21): 26840–26848. 10.1007/S11356-021-12445-4.

[10] M. Asril, Y. Lisafitri, A. Niswati, and S. Dirmawati. (2021). “Isolation, population, and selection of phosphate solubilizing bacteria from acid soils of Institut Teknologi Sumatera’ s Region, Lampung”. IOP Conference Series: Earth and Environmental Science. 1–7. 10.1088/1755-1315/830/1/012016.

[11] B. R. Glick. (2012). “Plant growth-promoting bacteria: mechanisms and applications”. Scientifica. 2012 : 1–15. 10.6064/2012/963401.

[12] H. G. Gowtham, P. Hariprasad, S. C. Nayak, and S. R. Niranjana. (2016). “Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato”. Rhizosphere. 2 : 72–74. 10.1016/j.rhisph.2016.07.008.

[13] D. Suryanto, M. Asril, E. Munir, and E. H. Kardhinata. (2014). “Assay of antagonistic bacteria of single isolate and combination to control seedling-off in chili seed caused by Fusarium oxysporum”. Journal of Pure and Applied Microbiology. 8 (2): 645–650.

[14] D. Suryanto, R. Wibowo, E. Siregar, and E. Munir. (2012). “A possibility of chitinolytic bacteria utilization to control basal stems disease caused by Ganoderma boninense in oil palm seedling”. African Journal of Microbiology Research. 6 (9): 2053–2059. 10.5897/AJMR11.1343.

[15] S. Widyastuti, Sumardi, A. Sulthoni, and Harjono. (1998). “Pengendalian hayati penyakit akar merah pada akasia dengan Trichoderma”. Jurnal Perlindungan Tanaman Indonesia. 4 (2): 65–72.

[16] Y. Susanti, G. Giyanto, M. S. Sinaga, K. H. Mutaqin, and B. Tjahjono. (2021). “The potential of endophytic bacteria from the root of Eucalyptus pellita as a biocontrol agent against Ralstonia solanacearum”. Biodiversitas Journal of Biological Diversity. 22 (6): 3454–3462. 10.13057/BIODIV/D220654.

[17] N. J. Fokkema. (1973). “The role of saprophytic fungi in antagonism against Drechslera sorokiniana (Helminthosporium sativum) on agar plates and on rye leaves with pollen”. Physiological Plant Pathology. 3 (2): 195–205. 10.1016/0048-4059(73)90082-9.

[18] M. Asril, N. R. Mubarik, and A. T. Wahyudi. (2014). “Partial purification of bacterial chitinase as biocontrol of leaf blight disease on oil palm”. Research Journal of Microbiology. 9 (6): 265–277. 10.3923/jm.2014.265.277.

[19] M. Lorito, G. E. Harman, C. K. Hayes, R. M. Broadway, S. L. Tronsmo, W. Woo, and A. Di Petro. (1994). “Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase”. Phytopathology. 83 (3): 302–307.

[20] S. Jadoon, A. Afzal, S. A. Asad, T. Sultan, T. Tabassam, M. Umer, and M. Asif. (2019). “Plant growth promoting traits of rhizobacteria isolated from potato (Solanum tuberosum L.) and their antifungal activity against Fusarium oxysporum.” The Journal of Animal and Plant Sciences. 29 (4): 1026–1036.

[21] J. Raaijmakers, M. Vlami, and J. de Souza. (2002). “Antibiotic production by bacterial biocontrol agents”. Antonie van Leeuwenhoek. 81 (1–4): 537–547. 10.1023/A:1020501420831.

[22] J. T. de Souza, M. de Boer, P. de Waard, T. A. van Beek, and J. M. Raaijmakers. (2003). “Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens”. Applied and Environmental Microbiology. 69 (12): 7161. 10.1128/AEM.69.12.7161-7172.2003.

[23] S. Compant, B. Duffy, J. Nowak, C. Clément, and E. A. Barka. (2005). “Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects”. Applied and Environmental Microbiology. 71 (9): 4951. 10.1128/AEM.71.9.4951-4959.2005.

[24] S. Mazurier, T. Corberand, P. Lemanceau, and J. M. Raaijmakers. (2009). “Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt”. The ISME Journal. 3 (8): 977–991. 10.1038/ismej.2009.33.

[25] M. Pellegrini, G. Pagnani, M. Bernardi, A. Mattedi, D. M. Spera, and M. Del Gallo. (2020). “Cell-Free Supernatants of Plant Growth-Promoting Bacteria: A Review of Their Use as Biostimulant and Microbial Biocontrol Agents in Sustainable Agriculture”. Sustainability. 12 (23): 1–22. 10.3390/SU12239917.

[26] E. Schoffelmeer, F. Klis, J. Sietsma, and B. Cornelissen. (1999). “The cell wall of Fusarium oxysporum”. Fungal Genetics and Biology. 27 (2–3): 275–282. 10.1006/FGBI.1999.1153.

[27] D. Indratmi. (2008). “Mekanisme penghambatan Colletotrichum gloeosporioides patogen penyakit antraknosa pada cabai dengan khmair Debaryomyces sp.”. Malang.

[28] U. Nasiroh. (2015). “Aktivitas antifungi Serratia marcescens terhadap Alternaria porri penyebab penyakit bercak ungu secara in vitro”. LenteraBio: Berkala Ilmiah Biologi. 4 (1): 13–18.

[29] F. Widiantini, E. Yulia, and C. Nasahi. (2018). “Potensi antagonisme senyawa metabolit sekunder asal bakteri endofit dengan pelarut metanol terhadap jamur G. boninense Pat”. Agrikultura. 29 (1): 55–60. 10.24198/AGRIKULTURA.V29I1.17870.

[30] K. Younes, A. Moghrabi, S. Moghnie, O. Mouhtady, N. Murshid, and L. Grasset. (2022). “Assessment of the Efficiency of Chemical and Thermochemical Depolymerization Methods for Lignin Valorization: Principal Component Analysis (PCA) Approach”. Polymers. 14 (1): 194. 10.3390/POLYM14010194.

[31] K. Younes, J. Laduranty, M. Descostes, and L. Grasset. (2017). “Molecular biomarkers study of an ombrotrophic peatland impacted by an anthropogenic clay deposit”. Organic Geochemistry. 105 : 20–32. 10.1016/J.ORGGEOCHEM.2016.12.005.

[32] K. Younes and L. Grasset. (2020). “The application of DFRC method for the analysis of carbohydrates in a peat bog: Validation and comparison with conventional chemical and thermochemical degradation techniques”. Chemical Geology. 545. 10.1016/J.CHEMGEO.2020.119644.

[33] K. Younes and L. Grasset. (2018). “Comparison of thermochemolysis and classical chemical degradation and extraction methods for the analysis of carbohydrates, lignin and lipids in a peat bog”. Journal of Analytical and Applied Pyrolysis. 134 : 61–72. 10.1016/J.JAAP.2018.05.011.

[34] K. Younes and L. Grasset. (2017). “Analysis of molecular proxies of a peat core by thermally assisted hydrolysis and methylation-gas chromatography combined with multivariate analysis”. Journal of Analytical and Applied Pyrolysis. 124 : 726–732. 10.1016/J.JAAP.2016.11.014.




How to Cite

M. Asril, Y. Lisafitri, and B. A. Siregar, “Antagonism Activity of Phosphate Solubilizing Bacteria Against Ganoderma philippii and Fusarium oxysporum of Acacia Plants”, J. Multidiscip. Appl. Nat. Sci., vol. 2, no. 2, pp. 82-89, Apr. 2022.