Forest Fire Risk Zone Mapping of Aalital Rural Municipality, Dadeldhura District, Nepal

Authors

DOI:

https://doi.org/10.47352/jmans.2774-3047.115

Keywords:

geographic information system, fire risk index, remote sensing, satelite imagery, wildfire

Abstract

Forest fire is one of the leading causes of forest and wildlife loss. The objective of this study was to use satellite imagery and Geographic Information System techniques to assess the forest fire risk zonation map of the Aalital rural municipality. This rural municipality is a part of the Sudurpaschim province, Nepal; is prone to forest fires. Four fire risk zones were established in the study area i.e. very high, high, medium, and low-risk zone. Thematic layers were derived from topographic maps and satellite imageries. For the delineation of fire risk zones, a multi-parametric weighted index model i.e. the FRI (Fire Risk Index) method was adopted. The fire incidence data provided by MODIS were used to validate the resulting forest fire risk zone map. About 25.17% of the total study area lies under the very high-risk zone followed by 46.51% under high risk, 25.68% under medium risk, and 2.62% under the low-risk zone. It can be inferred that the majority of the area is at high risk of forest fire. This map of fire risk zone can help in disaster and forest management as valuable data to prepare effective measures for appropriate fire risk management in the area.

References

[1] FAO and UNEP. (2020). The State of the World’s Forests 2020. FAO and UNEP, Rome. 10.4060/ca8642en.

[2] L. Juniyanti, H. Purnomo, H. Kartodihardjo, and L. B. Prasetyo. (2021). “Understanding the Driving Forces and Actors of Land Change Due to Forestry and Agricultural Practices in Sumatra and Kalimantan: A Systematic Review”. Land. 10 (5): 463. 10.3390/land10050463.

[3] L. I. de A. Lacerda, J. A. R. da Silveira, C. A. G. Santos, R. M. da Silva, A. M. Silva, T. V. M. do Nascimento, E. L. Ribeiro, and P. V. N. de Freitas.. (2021). “Urban forest loss using a GIS-based approach and instruments for integrated urban planning: A case study of João Pessoa, Brazil”. Journal of Geographical Sciences. 31 (10): 1529–1553. 10.1007/s11442-021-1910-4.

[4] J. J. Zhu and F. Q. Li. (2007). “Forest degradation/decline: Research and practice”. Chinese Journal of Applied Ecology. 18 (7): 1601–1609.

[5] FAO. (2020). “The new Global Forest Resource Assessment, FRA 2020”. https://solevaka.org/news/new-global-forest-resources-assessment-2020-now-available.

[6] M.-A. Parisien and M. A. Moritz. (2009). “Environmental controls on the distribution of wildfire at multiple spatial scales”. Ecological Monographs. 79 (1): 127–154. 10.1890/07-1289.1.

[7] L. N. Zhichkina, V. V Nosov, K. A. Zhichkin, V. V Kudryavtsev, I. A. Abdulragimov, and P. S. Burlankov. (2021). “Forest fires and forestry firefighting organization”. IOP Conference Series: Earth and Environmental Science. 677 (5): 052123. 10.1088/1755-1315/677/5/052123.

[8] M. S. Carroll, C. M. Edgeley, and C. Nugent. (2021). “Traditional use of field burning in Ireland: history, culture and contemporary practice in the uplands”. International Journal of Wildland Fire. 30 (6): 399. 10.1071/WF20127.

[9] A. Parashar and S. Biswas. (2018). “The Impact of Forest Fire on Forest Biodiversity in the Indian Himalayas ( Uttaranchal)”.

[10] G. Doiron. (2021). “Invasive Plant Relations in a Global Pandemic: Caring for a ‘Problematic Pesto’”. Environment and Planning E: Nature and Space. 251484862110661. 10.1177/25148486211066109.

[11] V. Varela, D. Vlachogiannis, A. Sfetsos, S. Karozis, N. Politi, and F. Giroud. (2019). “Projection of Forest Fire Danger due to Climate Change in the French Mediterranean Region”. Sustainability. 11 (16): 4284. 10.3390/su11164284.

[12] P. van Lierop, E. Lindquist, S. Sathyapala, and G. Franceschini. (2015). “Global forest area disturbance from fire, insect pests, diseases and severe weather events”. Forest Ecology and Management. 352 : 78–88. 10.1016/j.foreco.2015.06.010.

[13] NIFC. (2021). “National Fire News”.

[14] CIFFC. (2021). “National Fire Situation Report”.

[15] P. Deb, H. Moradkhani, P. Abbaszadeh, A. S. Kiem, J. Engström, D. Keellings, and A. Sharma. (2020). “Causes of the Widespread 2019–2020 Australian Bushfire Season”. Earth’s Future. 8 (11). 10.1029/2020EF001671.

[16] S. Biswas, K. P. Vadrevu, Z. M. Lwin, K. Lasko, and C. O. Justice. (2015). “Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar”. PLOS ONE. 10 (4): e0124346. 10.1371/journal.pone.0124346.

[17] N. Chitrakar. (2021). “Nepal battles worst forest fires in years as air quality drops”. Aljazeera. [Online]. Available: https://www.aljazeera.com/news/2021/4/9/nepal-battles-worst-forest-fires-in-years-as-air-quality-drops.

[18] K. B. Bhujel, R. Maskey-Byanju, and A. P. Gautam. (2017). “Wildfire Dynamics in Nepal from 2000-2016”. Nepal Journal of Environmental Science. 5 : 1–8. 10.3126/njes.v5i0.22709.

[19] V. Bhanumurthy, K. Ram Mohan Rao, G. Jai Sankar, and P. V. Nagamani. (2017). “Spatial data integration for disaster/emergency management: an Indian experience”. Spatial Information Research. 25 (2): 303–314. 10.1007/s41324-017-0087-5.

[20] B. Leblon, L. Bourgeau-Chavez, and J. San-Miguel-Ayanz. (2012). In: “S. Curkovic (ed) Sustainable Development - Authoritative and Leading Edge Content for Environmental Management”. InTechOpen. 10.5772/45829.

[21] L. B. Lentile, Z. A. Holden, A. M. S. Smith, M. J. Falkowski, A. T. Hudak, P. Morgan, S. A. Lewis, P. E. Gessler, and N. C. Benson. (2006). “Remote sensing techniques to assess active fire characteristics and post-fire effects”. International Journal of Wildland Fire. 15 (3): 319. 10.1071/WF05097.

[22] R. K. Pariyar. (2020). “Disaster Vulnerability Assessment in Parshuram Municipality, Dadeldhura, Nepal”. The Geographic Base. 7 : 79–90. 10.3126/tgb.v7i0.34273.

[23] R. Karki, R. Talchabhadel, J. Aalto, and S. K. Baidya. (2016). “New climatic classification of Nepal”. Theoretical and Applied Climatology. 125 (3–4): 799–808. 10.1007/s00704-015-1549-0.

[24] H. Abedi Gheshlaghi, B. Feizizadeh, and T. Blaschke. (2020). “GIS-based forest fire risk mapping using the analytical network process and fuzzy logic”. Journal of Environmental Planning and Management. 63 (3): 481–499. 10.1080/09640568.2019.1594726.

[25] E. Chuvieco and R. G. Congalton. (1989). “Application of remote sensing and geographic information systems to forest fire hazard mapping”. Remote Sensing of Environment. 29 (2): 147–159. 10.1016/0034-4257(89)90023-0.

[26] P. Smith, J. I. House, M. Bustamante, J. Sobocká, R. Harper, G. Pan, P. C. West, J. M. Clark, T. Adhya, C. Rumpel, K. Paustian, P. Kuikman, M. F. Cotrufo, J. A. Elliott, R. McDowell, R. I. Griffiths, S. Asakawa, A. Bondeau, A. K. Jain, J. Meersmans, and T. A. M. Pugh. (2016). “Global change pressures on soils from land use and management”. Global Change Biology. 22 (3): 1008–1028. 10.1111/gcb.13068.

[27] L. Shumilovskikh, P. Sannikov, E. Efimik, I. Shestakov, and V. V. Mingalev. (2021). “Long-term ecology and conservation of the Kungur forest-steppe (pre-Urals, Russia): case study Spasskaya Gora”. Biodiversity and Conservation. 30 (13): 4061–4087. 10.1007/s10531-021-02292-7.

[28] J. D. Kushla and W. J. Ripple. (1997). “The role of terrain in a fire mosaic of a temperate coniferous forest”. Forest Ecology and Management. 95 (2): 97–107. 10.1016/S0378-1127(97)82929-5.

[29] V. I. Kharuk, E. I. Ponomarev, G. A. Ivanova, M. L. Dvinskaya, S. C. P. Coogan, and M. D. Flannigan. (2021). “Wildfires in the Siberian taiga”. Ambio. 50 (11): 1953–1974. 10.1007/s13280-020-01490-x.

[30] L. Giglio, G. R. van der Werf, J. T. Randerson, G. J. Collatz, and P. Kasibhatla. (2006). “Global estimation of burned area using MODIS active fire observations”. Atmospheric Chemistry and Physics. 6 (4): 957–974. 10.5194/acp-6-957-2006.

[31] R. K. Jaiswal, S. Mukherjee, K. D. Raju, and R. Saxena. (2002). “Forest fire risk zone mapping from satellite imagery and GIS”. International Journal of Applied Earth Observation and Geoinformation. 4 (1): 1–10. 10.1016/S0303-2434(02)00006-5.

[32] A. A. A. Alkhatib. (2014). “A Review on Forest Fire Detection Techniques”. International Journal of Distributed Sensor Networks. 10 (3): 597368. 10.1155/2014/597368.

[33] S. Beguería. (2006). “Validation and Evaluation of Predictive Models in Hazard Assessment and Risk Management”. Natural Hazards. 37 (3): 315–329. 10.1007/s11069-005-5182-6.

[34] Y. Zhang, S. Lim, and J. J. Sharples. (2016). “Modelling spatial patterns of wildfire occurrence in South-Eastern Australia”. Geomatics, Natural Hazards and Risk. 7 (6): 1800–1815. 10.1080/19475705.2016.1155501.

[35] R. P. Chaudhary, Y. Uprety, and S. K. Rimal. (2016). In: “J. F. Shroder and R. Sivanpillai (eds) Biological and Environmental Hazards, Risks, and Disasters”. Elsevier. 335–372. 10.1016/B978-0-12-394847-2.00020-6.

[36] J. Russell-Smith, C. P. Yates, P. J. Whitehead, R. Smith, R. Craig, G. E. Allan, R. Thackway, I. Frakes, S. Cridland, M. C. P. Meyer, and A. M. Gill. (2007). “Bushfires ‘down under’: patterns and implications of contemporary Australian landscape burning”. International Journal of Wildland Fire. 16 (4): 361. 10.1071/WF07018.

[37] M. A. Matin, V. S. Chitale, M. S. R. Murthy, K. Uddin, B. Bajracharya, and S. Pradhan. (2017). “Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data”. International Journal of Wildland Fire. 26 (4): 276. 10.1071/WF16056.

[38] B. Singh, M. Maharjan, and M. S. Thapa. (2020). “Wildfire Risk Zonation of Sudurpaschim Province, Nepal”. Forestry: Journal of Institute of Forestry, Nepal. 17 : 155–173. 10.3126/forestry.v17i0.33633.

[39] Y. J. Kaufman, C. O. Justice, L. P. Flynn, J. D. Kendall, E. M. Prins, L. Giglio, D. E. Ward, W. P. Menzel, and A. W. Setzer. (1998). “Potential global fire monitoring from EOS-MODIS”. Journal of Geophysical Research: Atmospheres. 103 (D24): 32215–32238. 10.1029/98JD01644.

[40] O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, and J. Aryal. (2019). “Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables”. Fire. 2 (3): 50. 10.3390/fire2030050.

[41] D. Liu, Z. Xu, Y. Zhou, and C. Fan. (2019). “Heat map visualisation of fire incidents based on transformed sigmoid risk model”. Fire Safety Journal. 109 : 102863. 10.1016/j.firesaf.2019.102863.

[42] S. W. Wang, C.-H. Lim, and W.-K. Lee. (2021). “A review of forest fire and policy response for resilient adaptation under changing climate in the Eastern Himalayan region”. Forest Science and Technology. 17 (4): 180–188. 10.1080/21580103.2021.1979108.

Downloads

Published

2022-04-06

How to Cite

[1]
P. B. Subedi, K. Ayer, M. S. Miya, B. Parajuli, and B. Sharma, “Forest Fire Risk Zone Mapping of Aalital Rural Municipality, Dadeldhura District, Nepal”, J. Multidiscip. Appl. Nat. Sci., vol. 2, no. 2, pp. 70-81, Apr. 2022.