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Abstract
This paper develops a non-linear composite similarity-based framework for generating univariate physiological vital signs data 
from an input multivariate counterpart. The framework is built on mixture random variate using information provided by the inter-
relationships among variables. This allows the latent one-dimensional data to be generated as a weighted linear combination of the 
multivariate data, providing an easy way to model the weights in terms of desirable data features of interest. Using variable specific 
non-linear composite similarity statistic to handle short, medium- and long-term auto-relationships, the framework provides a 
unified context for easy quantification and assessment of both vital sign and observation level relative relevance. With the above 
formulation, better calibration and indication of key vital signs in traumatic events is presented. An illustrative example using real 
physiological vital sign datasets on trauma and non-traumatic patients provides evidence on its utility in handling both key 
informative incident and non-incident vital sign-specific features, events and patterns for development of pragmatic health 
monitoring indicators.    
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1. INTRODUCTION

In the rapidly evolving field of medical 

diagnostics and patient monitoring, the analysis of 

physiological vital signs plays a crucial role in the 

assessment and prediction of patient health 

outcomes. This requires fast and accurate models 

with the ability to leverage information from 

different data sources related to health. Traditional 

approaches often focus on individual vital signs or 

use simple composite scores, potentially 

overlooking complex interactions between different 

physiological parameters. This paper introduces a 

composite similarity-based data fusion, with a 

specific application to physiological vital signs [1]-

[4]. 

The human body's intricate systems are deeply 

interconnected, with vital organs working together 

to maintain homeostasis. This interconnectedness 

suggests that a more holistic approach to vital sign 

analysis could yield deeper insights into a patient's 

 
overall health status. Nevertheless, modelling of 

physiological vital sign data has been focused on 

variable-specific models and sometimes, with their 

relationship to either a set of predictors or 

composite scoring of multiple vital signs. The 

utility of composite scoring of multiple vital signs 

is registered in the prioritization of Intensive Care 

Unit (ICU) patients for urgent treatment based on 

Early Warning (EW) score derived from timely 

monitored vital signs [1][5].  It seems this 

convention, which has been adopted worldwide, is 

being widely used. 

In the area of variable-specific models for vital 

signs, literature has witnessed notable proposals 

spanning empirical and Gaussian process regression 

methods within both the univariate and multivariate 

dimensions. Clifton et al. [6] applied Kernel density 

estimation method proposed by Scott [7] for 

physiological vital sign data of upper-

gastrointestinal surgery patients to quantify 

deterioration in the health. Subjects were put into 

normal and abnormal groups using patient-specific 

admission information which aided the calibration 

of normal and abnormal patient models for the 

development of novelty scores. A standard 

threshold statistic was then derived from the normal 

model. Previous work developed univariate and 

multivariate Kernel density quantification schemes 

based on vital sign deterioration for prioritizing 

patients with chronic obstructive pulmonary disease 

for clinical review [8].  

Substantiating the Gaussian process application 
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to the quantification of deterioration of vital signs in 

health monitoring, the following notable works can 

be identified.  Application in the classification of 

ICU patients using acuity of ill-ness within the 

multi-task Gaussian process regression framework 

[6][9]-[13].  For a counterpart application within the 

single-task Gaussian process framework, Khalid et 

al. is a good candidate reference [14]. A 

comprehensive definition of a Gaussian process is 

provided in Seeger [15]. A Gaussian process (GP) 

as a generalization of multivariate normal 

distribution in infinite dimension. In line with the 

above definition, it is easy to understand that a 

Gaussian process regression (GPR) models 

functional data using a Gaussian process with mean 

and covariance functions. With this view, the 

perspective of multi-task Gaussian process 

regression becomes clear as an extension of GPR to 

model jointly, multiple vital signs with composite 

covariance defined for all related tasks. This allows 

for the information contained in interrelationships 

among the multiple vital signs to be considered if 

the observation times are different according to the 

multiple vital signs. This application breaks down 

when vital signs are observed over a common 

period time. For such data, drawing information 

from the interrelationships among the variables can 

provide baseline information for developing one-

dimensional framework in which the multi-

dimensional variables can be treated using their 

latent univariate counterpart based on composite 

random variable [16]. By developing a method that 

can effectively fuse multiple vital signs into a 

composite measure, we aim to capture these 

complex relationships and provide a more 

comprehensive view of a patient's physiological 

state. Our proposed method builds similarity-based 

framework for composite random variables, 

extending these concepts to the realm of 

physiological data. By leveraging empirical data 

recovery techniques, we address common 

challenges in medical data analysis, such as extreme 

data points, point-wisely interrelationships, varying 

measurement frequencies, and the need to account 

for individual patient baselines automatically.

  

2. MATERIALS AND METHODS 

 

2.1. Data 

We consider two real data examples to illustrate 

the utility of proposed method in handling both 

incident and non-incident datasets. The first data 

example will consider traumatic physiological vital 

sign data to test the applicability of the method in 

 

 

 

Table 1. Correlation structure of traumatic data. 

 
 

  RR HR SBP DBP TEP SPO2 RB MAP 

RR 1.000 0.216 -0.017 0.032 0.039 -0.154 0.022 0.123 

HR 0.216 1.000 -0.050 0.049 0.039 -0.099 0.055 0.484 

SBP -0.017 -0.050 1.000 0.784 -0.003 0.020 0.021 0.665 

DBP 0.032 0.049 0.784 1.000 0.012 0.030 0.001 0.898 

TEP 0.039 0.039 -0.003 0.012 1.000 -0.021 -0.010 0.027 

SPO2 -0.154 -0.099 0.020 0.030 -0.021 1.000 -0.564 -0.017 

RB 0.022 0.055 0.021 0.001 -0.010 -0.564 1.000 0.024 

MAP 0.123 0.484 0.665 0.898 0.027 -0.017 0.024 1.000 

 

 

Table 2. Correlation structure of non-traumatic data. 

  SBP DBP MAP PP HR 

SBP 1.000 0.704 0.821 0.589 0.265 

DBP 0.704 1.000 0.901 -0.159 0.269 

MAP 0.821 0.901 1.000 0.116 0.275 

PP 0.589 -0.159 0.116 1.000 0.061 

HR 0.265 0.269 0.275 0.061 1.000 
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calibrating traumatic events. In second example, an 

application to physiological vital sign data from 

healthy subjects will be utilized. These two 

examples will provide insights into the practical 

application of the methods in addressing public 

health data issues.  

 

2.1.1. Data 1 

Data 1 a traumatic vital signs data from trauma 

patients at the Komfo Anokye Teaching Hospital 

(KATH).  A di-identified data of dimension 

5011×12 on vital signs variables RR, HR, SBP, 

DBP, TEMP, SPO2, RBS, and MAP was obtained. 

Data pre-processing was conducted to exclude 

infants, babies and missing observations resulting in 

a cross-section data on adults in the age group 18–

44, comprising a subset of dimension 4064×8.   

 

2.1.2. Data 2 

The second data is a real de-identified 

physiological vital signs data obtained from 

Biofourmis, Pte. Ltd., a Health Data Analytic 

Company in Singapore based on their collaborative 

research with Singapore Heart Foundation. The data 

was made up of vital signs variables Systolic blood 

pressure (SBP), Diastolic blood pressure (DBP), 

Mean arterial pressure (MAP), Pulse Rate (PP), and 

Heart Rate (HR) with dimension 848 by 5.  The 

collection process followed a structured study in 

which healthy participants were continuously 

monitored over a period via wearable devices 

spanning varied physiological states and activities 

defined for the research such as sleeping, walking 

exercising, siting, etc.  

 

2.2. Model 

Let, physiological vital signs be denoted by    

                                       

with                         , as the time period common to 

all observations. Let     be associated with a set of 

covariates say                                           

which is not consistent with          or otherwise   

            Suppose there exists interrelationships 

among the ys as well as the Xs. The application of 

mainstream statistical methods becomes non-trivial 

due to the inherent data issues, especially when 

computational savings is of essence.  In this case, 

we propose a modelling framework in which the 

multivariate data can be fused into univariate data 

based on the interrelationships among the defining 

variables.  This framework is built on the concept of 

mixture (composite) random variable. We illustrate 

the nature of the frameworks before proposing the 

models. The framework for the case where   

           becomes 

 

       

      (1) 

 

and  

 

       (2) 

 

In Eq. (1), t and y are consistent but not with X, 

while Eq. (2) exhibits consistency across t, y, and 

X. Thus, data challenges associated with Eq. (1) 

 

 

 
 

 
Figure 1. Data pattern of (A) traumatic data (RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP) and (B) 

non-traumatic data (SBP, DBP, MAP, PP, and HR).  
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will be more than Eq. (2). Framework (1) proposes 

generating univariate version of                 as    and 

that of              as    . It can be seen that this 

framework reduces           dimensional data with lots 

of missingness created in the predictor spaces into 

just 3 dimensions. Modeling of     becomes 

relatively easy since a simple hierarchical model 

where     is modeled in terms of    at the first level 

and second level linking   . For framework (2), there 

is reduction of              into just 3 dimensions as a 

data variable space          . Thus, within this new 

data space, a model of the form            ,  

where   gives a vector of error terms.  This 

illustrates how the framework works in ensuring 

computational savings. With this, the proposed 

framework must ensure flexibility of movement 

between the two data spaces as the arrow depicts. 

This in a way indicates the nature of potential 

candidate models to be considered for the 

development of the framework. The focus of this 

paper is in line with the development of the 

framework.  

Now focusing on Eq. (1), and considering the 

response, and with motivation from mixture 

(composite) random variables, we propose a 

univariate data generative model    according to 

model (3); 

 

      (3) 

 

where θ and       are            matrices of weights 

and fusion statistics respectively and     defines an 

element-wise multiplication. The observations of  

     are of the form: 

 

 

 

making the entries of θ  and          as        which 

are vital sign specific together with           The 

fusion weights are allowed to satisfy the following 

property             This ensures that the resulting 

random variable is valid or follows a valid 

probability distribution by statistical theory. 

 

2.3. Spatial Composite Similarity Model for θ 

Adopting the Gaussian process concept of 

modelling and applying the idea of covariance 

function, we can model θ in terms of the point-wise 

spatial inter-relationships existing within variables 

to capture all levels of auto-relationships. This 

allows easy quantification of short-, medium-, and 

long-term trends present in the data. This is where 

the flexibility of Gaussian process covariance 

functions can be explored [15]. This property is 

well exhibited in the case of compound covariance 

functions. Based on the above information, we 

model      as the underlying variable specific spatial 

relationships via a composite similarity function, 

define point-wisely                                          as 

for                   : 

 

 

        

      (4) 

 

 

 

 

 

Table 3. Traumatic data. Empirical values of spatial covariance parameters. 

 
 

Empirical Estimates 

  Parameter 

 
1y

 
2y

 
3y

 
4y

 
5y

 
6y

 
7y

 
8y

 
1a 0.4426 0.3291 0.3217 0.3139 0.2599 0.4897 0.2923 0.3192 

 
2a 0.4885 0.3538 0.3417 0.3526 0.2557 0.4690 0.2851 0.3418 

 
3a 0.8125 0.5315 0.5619 0.5509 3.2094 1.6008 1.2660 0.5493 

 
1b 1.8416 1.6428 1.7644 1.7607 12.3985 3.3410 4.3378 1.7292 

 
2b 1.8230 1.6428 1.7644 1.7607 1.8009 3.3410 4.3378 1.7292 

 
3b 1.8230 1.6428 1.7644 1.7607 1.8009 2.9412 4.3378 1.7292 

y

( )y G y= 

( )G y n p
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with                             with                     

we adopted the deterministic treatment approach for 

the parameters of similarity measure (4), by relating 

them to key features of the underlying probability 

density functions (pdfs),    of the variables. 

Particularly, they were estimated using functions of 

moments of                    The   kth   non-central 

moment of a random variable y is defined as: 

 

       (5) 

 

where     is the pdf of y. Let also define the 

statistic          as below: 

 

       (6) 

 

Setting k = 2 to ensure only positive statistics to 

be consistent with parameter restrictions, we 

compute               as: 

 

 

 

where           ,                       are the mean, 

median, minimum and maximum of D(y)  

respectively. The motivation for using D(y) is its 

capability to assess the contributions of y values to 

a common measure of center, scaling them 

accordingly with respect to their proximity to the 

center. The g(y) is taken to be the kernel density 

estimate defined point-wisely as: 

 

       (7) 

 

where            is   symmetric   kernel   with 

smoothing parameter     and                gives  the 

observation on y [7]. On the other hand,              are 

set  to  be the first  three  smallest order statistics  of  

 

 

2.4. Statistics for θ and g(y) 

By Eq. (4), each                          generates an n × 

n similarity matrix which needs to be summarized 

into a vector to aid the generation of θ utilized in 

model (3). We consider the mean, median and 

Orthogonalized Gnanadesikan-Ketterning (OGK) 

statistics in this regard [16][17]. Physiological vital 

sign data often contains outliers and may follow 

non-normal distributions. Mean weights are optimal 

for normally distributed data, median weights are 

more robust against outliers, and OGK weights can 

offer multiple protection against outliers than its 

counterparts namely mean and median with the 

nature of statistics (Eq. (4)) adopted in this paper.  

They are computed as follows; 

 

       (8) 

 

 

 

 
 

 

 

Table 4: Non-traumatic data. Empirical values of spatial covariance parameters. 

                 Empirical Estimates 

Parameter 

 
1y

 
2y

 
3y

 
4y

 
5y

 
1a 0.3400 0.3320 0.3320 0.3399  0.3502 

 
2a 0.3646 0.3640 0.3424 0.3654 0.3856 

 
3a 0.5712 0.5277 0.5264 0.5674 0.5870 

 
1b 1.7016 1.6302 1.6630 1.7438 1.7254 

 
2b 1.7016 1.6320 1.630 1.7438 1.7254 

 
3b 1.7016 1.6320 1.630 1.7438 1.7254 
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Figure 3. Original data: Nature of fusion weight θ based on mean statistic for (A) traumatic data (RR, HR, 

SBP, DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 4. Original data: Nature of fusion weight θ based on median statistic for (A) traumatic data (RR, 

HR, SBP, DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 5. Original data: Nature of fusion weight θ based on OGK statistic for (A) traumatic data (RR, HR, 

SBP, DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 2. Nature of the fusion statistics D(y) for (A) traumatic data (RR, HR, SBP, DBP, TEP, SPO2, RBS, 

and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  
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where                                                              with 

 

 

 

 

 

and  

 

 

 

 

 

 

 

where               and     denote the median and 

median absolute deviation (MAD) of      

             respectively. We   considered      as   the 

fusion statistics for           in model (3).  

 

2.5. Vital Sign Specific Contributions in 

Treating     as the common data pattern presented 

by the entire p-dimensional data, both variable and 

observation  level  contributions in   can be 

quantified and assessed using simple statistics. This 

helps to assess fusion components and quantify 

their relevance to  the  common  pattern     Define 

vital sign specific and total contribution statistics 

for      as follows: 

 

                   (9) 

 

 

                (10) 

 

 

where    denotes the jth component of   . If we 

define the within vital sign specific contribution 

statistics as      then the relevance of ith observation 

in the jth vital sign can be written as follows. 

         

                (11) 

 

2.5.1. Utility of Contribution Statistics 

These statistics can be put to many useful uses 

such as pragmatic monitoring and assessment of 

influential observations by examining contribution 

to change-points in data pattern, which will 

eventually manifest in change-point in health 

condition such as deterioration. This can provide 

information on crucial vital signs to consider during 

traumatic events.  They can be automated and put to 

a similar use as in the Early Warning Scores  track 

and score approach to vital sign monitoring [1][5]. 

In the case of mean contribution statistic, its utility 

is seen in quantification of the overall impact a vital 

sign has with a measure of the entire vital signs 

considered in the fusion, defined in terms of either 

health, deterioration, indicator of emergency in the 

case of traumatic events etc. 

 

2.6. Implementation 

The methods were fully implemented in the R 

statistical software. Codes were scripted using 

TinnR and executed in R. The empirical density g

(y) was estimated using the kernel smoothing 

package, “ks” [8]. We considered the smoothed 

cross-validation estimator for hi. The execution of 

scripted algorithms was done using the Intel (R) 

Core (TM) i7, 6700 processor Windows PC 3.40 

GHz workstation. The  vital    sign   variables     

                  were standardized to remove the 

variable units of measure and allow them to have a 

common reference family of sampling distributions. 

That is for the jth variable, its standardized version,   

    is defined as below. 

 

                (12) 

 

2.7. Performance Assessment 

We define the following statistical measures of 

fit for the assessment of fusion performance, mean 

squared fusion error (MSFE), mean absolute fusion 

error (MAFE) and standard mean absolute fusion 

error (SMAFE); 

 

 

 

 

 

 

 

 

 

 

where   and   define the fused and variable 

specific components of      and m = np gives the 

total sample size.  
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Figure 7. Characteristics of fused vital signs using median weights for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 8. Characteristics of fused vital signs using OGK weights for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 9. Characteristics of fused vital signs using common weights for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 
Figure 6. Characteristics of fused vital signs using mean weights for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  
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3. RESULTS AND DISCUSSIONS 

 

We examine the evaluation of our proposed 

composite similarity-based fusion method for 

physiological vital signs. We look at the method's 

performance on real patient data using the empirical 

values of spatial covariance parameters.  First, we 

examine the nature of the underpinning assumption 

of the proposed methods for the datasets for the 

illustrative examples. Tables 1 and 2 report the pair-

wise interrelationships existing among the defining 

variables of the datasets 1 and 2, quantified using 

the Peasrson Correlation measure respectively. It 

can be seen that physiological vital signs variables 

are naturally interrelated at varied degrees in 

magnitude and direction. In particular, the traumatic 

vital signs variables exhibit relatively low 

interrelationships than its non-traumatic counterpart 

data.  This suggest that data fusion methods for 

such datasets should be designed to inherit the 

natural underlying features to ensure its practicality 

in real life applications.  

Next, we examine the nature of data generated 

by the variables of the two datasets. Figure 1 shows 

the plot of the vital signs for both traumatic data A 

(RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP) 

and Non-traumatic data B (SBP, DBP, MAP, PP, 

and HR).  

The differences in patterns underlying the vital 

sign variables of trauma patients are evident, with 

RR and HR exhibiting variant trends in comparison 

with the rest. Also, within the non-trauma data, PP 

and SBP exhibit different trends in comparison with 

the others. It is expected to obtain similar feature 

patterns if the data is rich across the vital sign 

variables.  

Table 3 and Table 4 report the empirical 

estimates of the parameters of the spatial similarity 

measure defined for quantifying the underlying 

interrelationships among the vital sign variables for 

traumatic and non-traumatic datasets respectively.  

Clearly, there exists differences among the 

estimates obtained for the two datasets. Also, 

estimates for                 exhibit variability across 

and within vital sign variables. In  the  case  of      

                    the variability is only seen across vital 

sign variables. This evident for both the traumatic 

and non-traumatic datasets. 

Figure 2 shows the nature of the D(y) statistics 

obtained from the vital signs data. From left to right 

for A are statistics corresponding to RR, HR, SBP, 

DBP, RBS, TEP, SPO2, and MAP. Also, for B, are 

statistics corresponding to SBP, DBP, MAP, PP, 

and HR. The differences in pattern underlying the 

vital sign variables of the trauma patients are 

evident, with HR, SBP and HR exhibiting variant 

trends in comparison with the rest. The non-trauma 

data exhibits similar feature patterns with minimal 

deviations. It is expected to obtain similar feature 

patterns with vital sign specific data, if the data is 

similar across all the vital sign variables.  

The typical relationships that exist between the 

fusion weights θ and the vital sign observations are 

illustrated in Figures 3 – 5 for θ based on the mean, 

median and OGK weighting statistics respectively. 

This was done for both the traumatic and non-

traumatic data. Apparently, a common general trend 

is exhibited by all the weighting statistics with 

varying discriminating capabilities across both 

datasets. Particularly, the mean weighting statistics 

shows that there are few observations that deviate 

from a common pattern underlying the data. This 

 

 

Table 5.  Traumatic data: Vital sign specific average contribution statistics    .  

 
Vital signs 

Parameter 

 
1y

 
2y

 
3y

 
4y

 
5y

 
6y

 
7y

 
8y

 
M 15.9381 3.4775 1.4774 -0.6401 0.9433 0.2056 -2.3609 1.0678 

 
Med 15.9381 3.4775 1.4774 -0.6401 0.9433 0.2056 -2.3609 1.0678 

 
OGK 15.9381 3.4775 1.4774 -0.6401 0.9433 0.2056 -2.3609 1.0678 

 
c 14.6590 2.9355 2.6037 -0.7206 -0.1374 -1.3325 -5.4360 4.2350 



 
 

1 2 3, ,  and a a a

1 2 3, ,  and ,b b b
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may be due to its non-resistance to extreme 

observations. On the hand, the median and OGK 

weighting statistics yield improved data pattern, for 

clearer identification of potential observations with 

issues than those reported by the mean weighting. 

The vital sign-specific fused components and 

overall composite data pattern underlying the 

multivariate vital sign data are shown in Figures 6 – 

8 respectively, for mean, median and OGK 

weighting schemes for the two illustrative data 

examples.  The results obtained based on equal 

weights (natural weight of 1) for all vital signs is 

presented in Figure 9. There is obvious adaption of 

the methods to dataset with differences at varied 

levels of frequencies according to observed events.  

Also, obvious significant differences in latent data 

patterns are evident among those generated by the 

mean, median and OGK and their equal weight 

counterpart across both datasets. Furthermore, in 

terms of preservation of intrinsic functional nature 

of data, it can be observed that ensuring variable 

weighting yields improvement in localized 

adjustment to vital sign conditions. The ability to 

generate the same fusion results using the three 

weighting schemes is particularly of great value in 

public health in terms of pragmatic intervention 

delivery. It is of great value in the sense that there 

would not be any extra need for model selection 

which may require additional resources that might 

not support in the case of emergency.  

Tables 5 and 6 report the overall performance 

statistics of the vital signs in terms of average 

contribution to the formation of composite vital 

sign from the multivariate data based on the two 

illustrative datasets. Contribution efforts of the vital 

signs are highly different across statistics 

considered for building the weights. This is better 

seen with variable weighting scheme than its 

common or fixed counterparts on the average. 

Particularly, ranking the vital signs based on the 

weighting scheme, we have                      

          Also, ranking the vital signs based on 

common weighting produces                                 

         for the traumatic data. Furthermore, there 

exists consistency in calibration of contributions of 

vital signs based on the contribution statistics using 

the weighting schemes in comparison with the 

equal weights across vital signs. In the case of the 

non-traumatic data, it can be observed that 

contributon efforts of vital signs exhibits variation 

across weighting schemes both within and between 

variables.  There seems to be clearer illustration of 

consistency in calibration reported by the weighting 

schemes in terms of ordering the associated vital 

signs in comparison with their equal weight 

counterpart. This inconsistencies can lead to issues 

in identication of crucial vital signs in the provision 

of pragmatic intervesions in the case of 

ermegencies. 

The effect of vital sign specific derivatives of 

fused components on the fused vital sign based on 

mean, median, OGK, and common weight (weights 

= 1) weighting schemes are shown in Figures 10 – 

13 respectively. The impact of variable weights-

observation level in comparison with common 

weights, is clear in the key differences in data 

pattern exhibited in the above figures from both 

data perspective. Also, the same trend showing 

across the mean, median and OGK weighting 

schemes is a reflection of the authenticity of the 

true information that underlies the two multivariate 

vital sign datasets. 

 

 

Table 6. Non-traumatic data: Vital sign specific average contribution statistics    .  

 
Vital signs 

Parameter 

    
1y

    
2y

 
3y

 
4y

 
5y

 
M   2.5182   2.8018  3.0090   1.6988   2.3029 

 
Med   2.4706   2.7056  2.9576   1.6273   2.2177 

 
OGK   2.7140   3.4863  3.2294   2.0694   3.2183 

 
c   2.9447   3.3114  2.9747   2.0952   3.3836 

 

 
 

1 2 3 8 5 6 4, , , , , , ,y y y y y y y

7and .y

1 8 2 3 5 4 6, , , , , , ,y y y y y y y

7and .y
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Figure 10. Vital sign fusion contribution based on mean weighting for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 11. Vital sign fusion contribution based on median weighting for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 12. Vital sign fusion contribution based on OGK weighting for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  

 

 
Figure 13. Vital sign fusion contribution based common unit weight for (A) traumatic data (RR, HR, SBP, 

DBP, TEP, SPO2, RBS, and MAP) and (B) non-traumatic data (SBP, DBP, MAP, PP, and HR).  
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Figure 14 show the vital sign observation level 

fusion contributions in vital sign fusion component 

with Median. The fifth vital sign, temperature 

(yellow line) shows the highest contribution 

consistently across all three fusion statistics 

methods in the vital sign observation level fusion 

contributions in vital sign fusion component. 

Physiologically, temperature regulation is essential 

for proper enzyme function and metabolic processes 

with it changes significantly affecting heart rate, 

breathing rate, and overall cellular function. Also, 

the sixth vital sign, oxygen saturation (SPO2) 

(brown line) appears as the second most influential 

parameter, with values typically around 0.15–0.2 

and occasional spikes reaching 0.40– 0.45 measures 

the percentage of hemoglobin in your blood that's 

carrying oxygen with normal range from 95–100%. 

Below 90% is considered low and may indicate 

hypoxemia (low blood oxygen). SpO2 monitors 

how efficiently your lungs transfer oxygen to your 

blood and how well your circulatory system 

delivers that oxygen throughout your body. Lastly, 

vital sign seven, random blood sugar (RBS) (purple 

line) shows consistent moderate contribution 

around 0.1, positioning it as the third most 

influential vital sign. RBS measures the blood 

glucose level at any random time, regardless of 

when you last ate. The normal range is less than 

140 mg/dL (7.8 mmol/L) with higher values 

indicating prediabetes or diabetes RBS Helps assess 

glucose metabolism and screen for diabetes. 

Clinically, there is the need for prioritize 

monitoring. The analysis suggests that clinicians 

should prioritize monitoring temperature and SpO2 

as they contribute most significantly to the overall 

physiological assessment of trauma patients. The 

minimal contribution of several vital signs suggests 

that in resource-constrained environments, 

monitoring efforts could potentially be streamlined 

to focus on the most informative parameters.  

Tables 7 and 8 compare the fusion error statistics 

for different weighting methods namely the Mean, 

Median, and OGK weights as well as a common 

weighting for both traumatic and non-traumatic 

datasets. The error statistics are reported using 

MSFE, MAFE and SMAFE. Interestingly, the 

Mean, Median, and OGK weights all produce 

identical error statistics, while the common weight 

produces much higher errors, particularly for MSFE 

for the traumatic vital sign data.  In the case of the 

non-traumatic vital sign data, there exists variability 

with across error measure and weighting scheme. It 

can be seen that three weighting schemes tends to 

overperform their common weight counterpart in 

MSFE and MAFE.  Interestingly, it can be observed 

that MSFE and MAFE seem to support vital sign 

data fusion as overall fitting error statistics than 

SMAFE.  

In general, it can be seen that the proposed 

method demonstrates a strong ability to fuse 

multiple physiological vital signs into a single 

composite measure. This is evidenced by the low 

error statistics (MSFE, MAFE, SMAFE) for the 

mean, median, and OGK weighting methods shown 

in Tables 7 and 8. The fact that these three 

weighting methods produce identical error statistics 

 

 

Figure 14. Vital sign observation level fusion contribution in fused component based on median statistic 

(Theta 1 to 8 are RR, HR, SBP, DBP, TEP, SPO2, RBS, and MAP).  
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suggests a robust fusion process that is not overly 

sensitive to the choice of weighting method [18]-

[20]. The similar performance of mean, median, and 

OGK weighting methods for the traumatic data 

suggests that the fusion approach is flexible and can 

adapt to different data characteristics relating to 

traumatic events. This could be particularly 

valuable when dealing with physiological data that 

may have outliers or non-normal distributions [21]-

[23]. The relevance of observations within a given 

vital sign to a component can be quantified, so that 

their impact on data specific events (e.g. traumatic 

events) can be assessed. These statistics can be put 

to many useful uses such as pragmatic monitoring 

and assessment of influential observations by 

examining contribution to change-points in data 

pattern, which will eventually manifest in change-

point in health condition such as deterioration [24]. 

This can provide information on crucial vital signs 

to consider during traumatic events. They can be 

automated and put to a similar use as in the EW 

scores track and score approach to vital sign 

monitoring [1][5]. In the case of mean contribution 

statistic, its utility is seen in quantification of the 

overall impact a vital sign has with a measure of the 

entire vital signs considered in the fusion, defined 

in terms of either health, deterioration, indicator of 

emergency in the case of traumatic events, and so 

on.  

 

 

 

 

4. CONCLUSIONS 

 

In this paper, a novel framework for calibrating 

the relative significance of physiological vital signs 

has been proposed and implemented. The 

framework creates a one-dimension data out of an 

input multivariate physiological vital sign data 

based on the theory of mixture (composite) random 

variables. By this, the one-dimensional data is 

modelled as empirical mixture of underlying p 

dimensional data variables. Mixing weights are 

computed using non-linear composite similarity 

statistic to capture the available interrelationships 

within a variable, so that it is variable-specific. 

Adopting the Gaussian process nature of covariance 

functions, the composite similarity statistic is 

defined to handle short-, medium- and long-term 

auto relationships, providing a unified context for 

easy quantification and assessment of both vital 

sign and observation level relative relevance. This 

yields a better calibration and indication of key vital 

signs in traumatic and non-traumatic situations. An 

implementation of the framework using real 

physiological vital sign data of both trauma and non

-trauma, using both common and variable-specific 

weights illustrates its utility in ensuring improved 

quantification and calibration of relevance of vital 

signs in traumatic conditions. Thus, providing 

informed indication on crucial vital signs for 

pragmatic planning of treatments of traumatic and 

non-traumatic patients.     

 

 

 

 

Table 7. Traumatic data, Fusion error statistics across varied weights. 

 

Error statistic 
Fusion Statistics 

Mean Median OGK Common Weight 

MSFE 0.03143 0.03143 0.03143 10.90361 

MAFE 0.12953 0.12953 0.12953 2.46013 

SMAFE 2.03833 2.03833 2.03833 1.26431 

Table 8. Non-traumatic data, Fusion error statistics across varied weights.  

 

Error statistic 
Fusion Statistics 

Mean Median OGK Common Weight 

MSFE 0.25199 0.23503 0.34250 8.60034 

MAFE 0.40385 0.38980 0.46810 2.33706 

SMAFE 2.15498 5.99621 2.26192 2.10886 
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