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Abstract
Geostatistic is a statistical tool used in the mining sector to estimate and classify mining resources at a specific location. The 
purpose of this study was to evaluate the distribution or model of nickel resources, as well as estimate and classify nickel resources 
using a geostatistical approach. This study used data from exploration drilling at one of the nickel mining concessions in Sulawesi, 
Indonesia. The data set included 464 drill holes with an average distance of 50–100 m. The initial stage in this study was to develop 
a geological model, followed by descriptive statistical analysis, with the results of the variance coefficient ranging from 0.5 to 1.5 
and normal distribution, indicating that the ordinary kriging method can be used and is considered adequate to produce sound and 
consistent findings. The values obtained from the variogram analysis on the spherical model will be used as parameters in the 
ordinary and  efficiency kriging processes. Based on the estimation and classification of nickel resources using ordinary and 
efficiency kriging, the total measured, indicated, and inferred nickel resources are 39, 1.25, and 3 million tons, respectively, with an 
average Ni content of 1.16%.    
 
Keywords nickel, geostatistic, variogram, ordinary kriging, resource estimation   

1. INTRODUCTION

Nickel is a mining material needed in various 

applications and industries, such as the batteries, 

electronics, textiles, and steel coating materials [1]-

[3]. This causes demand to meet nickel needs to 

continue to increase. Therefore, to meet these 

needs, the nickel mining industry must continue to 

be carried out and developed [4].  The success and 

smooth operation of a mining project, including 

nickel mining, depends on a series of stages that 

need to be carried out. One of the stages in question 

is exploration activities [5]. Exploration is the 

essential stage of determining the quality and 

quantity of nickel deposits in the area to be mined. 

As a bare stage, exploration activities must obtain 

optimal results. Optimal results in exploration 

activities can be obtained through modeling stages 

and calculating the number of nickel resources. The 

modeling stages carried out will produce a resource 

model as an illustration of the form of nickel 

 
deposits to be used as a consideration in 

determining mining methods [6].  

Meanwhile, the results of calculating the number 

of resources can be used for mining evaluation 

activities during the feasibility study process and 

the implementation of mining activities. Resource 

modeling and calculations can be done by applying 

a spatial statistical approach, namely geostatistic. 

Geostatistic is a spatial statistical approach used in 

the mineral industry to estimate the number of 

minerals with data containing spatial diversity on 

large and small scales [6][7]. Spatial interpolation 

is a method used to predict an unknown value based 

on the value obtained from an observation. 

Resource estimation using a geostatistical approach 

can be done with various work methods, including 

the kriging method. Kriging is a method that can be 

used to analyze geostatistical data to estimate the 

value of an unsampled point based on the sampled 

points around it. The kriging method has developed 

and is divided into several methods: simple kriging, 

ordinary kriging, and universal kriging. The three 

methods are differentiated based on what they 

know whether or not the average value (mean) is in 

the data population to be analyzed [7]. The first 

step in performing ordinary kriging interpolation is 

to form an experimental semivariogram. The 

experimental semivariogram is calculated from the 

measurement data and then plotted as a function of 

distance [8]. This research aims to model the 3D 

shape of nickel deposits and classify and estimate 

resources using the ordinary kriging method. The 
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expected benefit of this research is that the resulting 

3D nickel resource model can be used for reserve 

calculation. 

  

2. MATERIALS AND METHODS 

 

2.1. Materials 

This study uses the following data: a topographic 

map, a mining business license boundary, 

geological data, exploration data (drilling and 

geophysical well logging), a 3D geological model 

(block model), and resource and reserve estimation 

and classification.  

 

2.2. Methods 

The study area is a nickel mining company (PT. 

X), located in Langgikima District, North Konawe 

Regency, Southeast Sulawesi Province.  

This research uses statistical and geostatistical 

analysis tools to describe data distribution and 

mineralization characteristics before resource 

estimation. The data used in this research is 

secondary data related to the geological condition 

of laterite nickel deposits in the PT X block area 

Makmur Lestari Primatama (Figure 1). This data 

was obtained from the results of geological drilling 

carried out by the company's exploration team. 

Next, the data are processed using a geostatistical 

approach, in this case, the ordinary kriging method, 

to obtain resource classification and estimate the 

amount of resources contained in the block X area. 

Stages analysis composed of obtaining data from 

exploration drilling results, consisting of drill hole 

coordinates, data on the depth and distribution of 

laterite layers, and data on Ni levels and other 

minerals contained [9]. Geological modeling is 

carried out to visualize the shape of nickel deposits 

in the block X area. Furthermore, a model can be 

formed using model blocks. Modeling was carried 

out using Surpac 6.6.2 software. Validation of the 

data was done from the analysis statistics base. The 

semivariogram analysis was carried out to obtain 

values that become parameters in estimating levels 

and quantities of resources. The content and 

quantity of resources in each laterite layer were 

estimated based on a geological model limited by 

topography mining business licence boundaries. 

Estimation of resource levels and quantities was 

carried out using the Ordinary Kriging method. 

Estimation was carried out using Surpac 6.6.2 

software with a company license. Classification of 

the resources was based on mark kriging efficiency, 

efficiency as well as count. The tonnage of each 

classification is based on the volume and density 

values for each block. 

 

2.2.1. Statistics Univariate 

Univariate statistics is a statistical analysis used 

to describe data in a population. It has three roles in 

the data analysis process, i.e., calculating measures 

of data centrality, calculating measures of data 

diversity, and visualizing data distribution [10][11]. 

 

 

Figure 1.  Map Location of Study Area at PT. X. 
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Size spread data are the device statistics that can 

state how much the variation in values in a 

population. Data distribution size parameters 

include variance, standard deviation, and coefficient 

of variance. Visualization of distribution forms can 

present data in the form of curves or graphs that can 

describe the form of data distribution, including size 

slope curve (Skewness) and size tapered curve 

(Kurtosis). 

 

2.2.2. Statistics Spatial 

When working with spatial data using a 

statistical approach, a variogram is needed to 

quantify the correlation between spatial data [12]

[13]. Two spatial data that are close together have 

the possibility of having relatively the same value 

compared to two values that are further apart. The 

variogram can be formulated with the Equation 1 

[14]-[16].  

 

      (1) 

 

where      is mark variogram with distance h,         

        is Lots partner data which own distance h,         is 

mark observation on location sample point,         is 

mark observation on partner point sample which 

distance h and     are the distance between samples. 

Experimental and theoretical semivariograms have 

goodness-of-fit parameter values. With this fitting, 

the values of the fit parameters for the 

semivariogram can be obtained [17]. Parameter 

values are used as a reference in determining the 

model on a theoretical semivariogram and as a 

reference for the estimation process [16][17].  

 

2.2.3. Ordinary Kriging Method 

Kriging is a method that can estimate the number 

of resources using a geostatistical approach, which 

refers to data analysis techniques that predict 

unknown data values using other known values [15]

-[17]. This can help estimate unknown variable 

values at unsampled locations with known values at 

nearby sampled locations [18][19]. Kriging is 

known by the acronym BLUE, or the best linear 

unbiased estimator [20]. Ordinary kriging is now a 

well-accepted method in mining grade control and 

mine reserve estimation [21]. The ordinary kriging 

method is a linear combination of sample variables 

according to the Equation 2 [22][23].  

 

      (2) 

 

where      is mark estimation on location which 

no sampled,   is weight coefficient of sampled 

locations with                          is mark on that 

location sampled, and      is Lots sample.  

 

2.2.4. Mineral Resource Classification 

Mineral resources are materials with economic 

value with a particular concentration or occurrence 

located below the earth's surface or above the 

earth's crust and have a particular form, quality, and 

quantity. They are assessed for prospects based on 

specific reasons so that they can be extracted 

economically [24][25]. Resources can be classified 

into inferred, indicated, and measured mineral 

resources [26][27]. The classification of resources 

and reserves is determined based on two criteria: 

confidence in geological conditions and 

improvement of mine feasibility [28][29]. Mineral 

resources with the highest level of geological 

confidence are measured resources. In contrast, the 

resource classification with the lowest level of 

geological confidence is inferred resources, and the 

indicated resource classification is considered to 

have sufficient confidence [30]. Classification of 

resources with a fair to high level of confidence can 

be converted into reserves. One of the kriging 

parameters that can be used for resource 

classification is Kriging efficiency (KE). KE is 

expressed by Kriging variance normalized by block 

variance in the form of a percentage; if the KE 

value is high it means that the kriging variance is 

low or vice versa. KE is used as a metric to evaluate 

 

 

Table 1. Kriging Efficiency Range for Classification Resources. 

 

 
 

Kriging efficiency (KE) Classification Resource 

KE ≥ 0.5 ( measured ) 

KE < TO < 0.5  ( indicated ) 

KE ≤ 0.3 ( inferred ) 



J. Multidiscip. Appl. Nat. Sci. 

386 

the efficiency of block estimation (Eq. 3) [21]. The 

classification of nickel resources based on Kriging 

Efficiency is described in Table 1.  

 

      (3) 

 

where σ2
K(uV) is the KV, σ2 is the variance of 

the data for the domain, and γ¯(V,V) is the average 

semivariogram within the blocks. The following are 

the provisions for the value of kriging efficiency in 

determining resource classification [30]. 

The explanation of the term mineral resources 

refers to SNI 4726 of 2019, namely, inferred 

mineral resources are part of resources where 

tonnage, grade, and mineral content can be 

estimated with a low level of confidence. Indicated 

mineral resources are part of mineral resources 

whereas tonnage, density, shape, physical 

characteristics, grade, and mineral content can be 

estimated with a reasonable level of confidence. 

The measured mineral resources are part of mineral 

resources where tonnage, density, shape, physical 

characteristics, grade, and mineral content can be 

estimated with a high level of confidence.  

 

3. RESULTS AND DISCUSSIONS 

 

3.1. Database 

Exploration activities include geological 

mapping, drilling, and sediment content testing in 

the area to be mined. The exploration data are then 

used as a reference in geological modeling and 

 

 

Table 2. Drill hole data.  

 

 
 

Data Type Lots of Data Description 

Collars 464 ID Drill Hole, Coordinate, Depth, Hole path 

Survey 464 ID Drill Hole, Depth, Azimuth , Dip 

Geology 17.188 ID Drill Hole, From - To, Layer of geology, Layer of nickel 

Samples/Assays 17.188 ID Drill Hole, From - To, type, Elevation 

 

Figure 2.  Drill hole distribution view. 
 

 

Figure 3. Details appearance of drill hole.  
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estimating the grade and quantity of resources. This 

data includes the name of the drill hole (hole ID), 

coordinate (easting, northing, elevation), intervals 

depth (from-to), total depth of the drill hole (depth), 

slope of the drill hole, and data on Ni content and 

other supporting elements and minerals (Fe, Co, 

SiO2, CaO, MgO). Next, the data are divided into 

four types: data collars, data surveys, data geology, 

and data samples/assays (Table 2). Data can be 

distributed by need processing on-device software. 

Furthermore, data correction was carried out to 

ensure the completeness of the data and that it was 

valid for use. The research area has 464 drilling 

holes with an average regional drilling distance of 

100 m, a detailed drilling distance of 50 m, and 

varying drill hole depths. The distribution map of 

drill point locations and sample borehole cross-

sections are shown in Figure 2. The software also 

corrects the four types of data during the data entry 

process to confirm that the data are complete and 

valid and can be used for the following process.  

 

3.2. Block  Model Construction 

For the projectile configuration comprising a 

conical forebody and boattail, the effect of the 

boattail shape on the drag is shown in Fig. 3 as a 

function of Mach number. For that, the higher the 

angle of the boattail, the lower the drag. 

 

3.2.1. Topographic Model 

The topographic model is created based on the 

results of map digitization of the area to be mined. 

In resource estimation, topography is needed as a 

limit when extrapolating sediment levels in the 

vertical direction. A solid topographic map of the 

study area can be seen in Figure 4.  

 

3.2.2. Geological Model 

A geological model is needed to limit the 

estimation of the content and quantity of resources 

in the research area so that the estimation results are 

not extrapolated too far.  This model is based on 

geological data relating to information about the 

distribution of laterite layers, as shown in Figure 5. 

 

 

Figure 5. Geological model cross section in two dimensions. 
 

 
 

Surface : Topo Bottom saprolit 

Bottom limonit 

 

Figure 4. Topography of the research area in three dimensions.  
 

Figure 6. Ore body domain viewed from the side view in a three-dimensional geological model. 
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The three-dimensional geological model of the 

ore body when viewed from the side view can be 

seen in Figure 6. 

 

3.2.3. Nickel Modeling using the Block Model 

Method 

The block model is a three-dimensional block 

composed of smaller blocks than the entire model 

block, which must cover the entire ore body 

domain. The block model was produced in research. 

This is arranged on 261,955 blocks. Information 

regarding the size skeleton block model, as well as 

the maximum and minimum values for east, north, 

and elevation coordinates (Table 3).  

 

3.3. Statistical Analysis 

Statistical analysis was carried out on each grade 

data to be estimated, as well as Ni grade data in the 

limonite and saprolite layers. Statistical analysis 

was carried out to validate that the data could be 

used for the estimation process using the ordinary 

kriging method [9]. The following are the results of 

the statistical analysis obtained. The ordinary 

kriging method can be applied and will produce 

optimal and reliable results if the data’s coefficient 

of variance (CV) value ranges between 0.5–1.5. A 

CV value of less than 0.5 produces a reliable 

estimate, while CV results greater than 1.5 are 

deemed unable to give good results [29]. Based on 

the results of statistical analysis in Tables 3 and 4, 

the CV value is between 0.5 - and 1.5, so it can be 

used for the resource estimation process using the 

ordinary kriging method and is considered to 

provide good and reliable results [31][32]. It is also 

known that data tends to have a positive skewness; 

this shows that the median value is less than the 

mean. The same thing also happens to the kurtosis 

value, which shows a positive value in the analysis 

results. The histogram of statistical calculation 

results is needed to determine the distribution and 

symmetry of the data so that it can be used to 

interpret the character of all data in general. The 

histogram of nickel assay data can be seen in Figure 

7.  

The histogram represents the simulated 

distribution of the variable Ni, based on the 

provided descriptive statistics. The data are 

generated with a slight positive skew (right skew) 

and a sharp peak, as indicated by the skewness and 

kurtosis values. The data are clipped within the 

range of 0.00 to 4.13, respecting the specified 

minimum and maximum values. The results of the 

statistical analysis of the data on the limonite and 

saprolite layers are listed in Tables 4 and 5.  

 

 

Figure 7. Nickel assay histogram. 
 

 

Table 3. Parameter size and coordinate constraints for block models. 

 

 
 

Direction 
Coordinate 

Block Size (m) 
Minimum Maximum 

East 418600 420600 12.5 

North 9635600 9637200 12.5 

Elevation - 100 400 1.0 
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3.4. Semivariogram Analysis 

Based on the existing data, anisotropy analysis 

and determination of variogram parameters are 

carried out to be used in ordinary kriging 

estimation. This kriging method estimates the 

nickel content in a block with no known horizontal 

value. The first step in the semivariogram analysis 

process is determining the lag, which is the distance 

between data that form one or more data pairs. The 

lag setting applied in this research is 100 m. This 

lag distance is close to the sample mean distance. 

The work then continues with the fitting process to 

match the experimental semivariogram results with 

the theoretical semivariogram model.  

Exponential, Spherical, Gaussian, and Cubic 

model curves are all semivariogram models used in 

geostatistical analysis. All these models have their 

own uniqueness and characteristics that can be 

analyzed in specific contexts.  However, in the 

context of selecting the most suitable model for a 

particular geostatistical data, the best choice can be 

determined by comparing the model prediction 

error results for validation data.   

Determining a variogram model involves 

selecting a model (e.g., spherical, exponential, 

Gaussian) that best fits the empirical variogram 

data, often using visual inspection and statistical 

metrics such as root mean square error (RMSE). 

The spherical model is commonly used in 

variogram modeling because it effectively 

represents spatial correlation in many natural 

phenomena, particularly in geological and 

environmental sciences. Variogram fittings were 

made with the aim of obtaining parameters for 

estimating Ni content to obtain range, sill and 

nugget effect values. The experimental variogram 

fitting results show that the variogram model is a 

spherical model. The model was chosen because it 

has good initial behavior and from the results of the 

data pattern matching analysis on the experimental 

variogram with the theoretical variogram model, the 

most suitable model is the spherical variogram 

 

 

Table 4. Results of statistical analysis of data on limonite and saprolite layers. 

 

 
 

Limonite Layer 

Variable Ni Fe Co SiO2 CaO MgO 

Data (n) 8005 8005 8005 8005 8005 8005 

MinValue 0.28 35.01 0.01 6.00 0.00 0.00 

Max Value 3.08 59.48 0.79 28.71 1.06 11.74 

Mean 1,113 45,288 0.129 8,966 0.013 0.59 

Median 1.07 45.46 0.12 7.89 0.00 0.00 

Variance 0.118 19,067 0.002 7,340 0.001 0.900 

Standard Deviation 0.344 4,366 0.054 2,709 0.003 0.949 

Coeff. of Variance 0.309 0.009 0.424 0.302 1,599 1,509 

Skewness 0.683 -0.008 2,666 1,856 8,587 3,965 

Kurtosis 3,648 2,736 17,454 6,950 140,337 26,355 

Saprolite Layer 

Variable Ni Fe Co SiO2 CaO MgO 

Data (n) 7034 7034 7034 7034 7034 7034 

Min Value 0.00 0.00 0.00 0.00 0.00 0.00 

Max Value 4.13 34.98 0.32 66.00 8,873 53.21 

Mean 1,033 14,307 0.026 34,986 0.729 22,042 

Median 0.883 11,088 0.020 35.01 0.478 23,288 

Variance 0.559 72,835 0.000 97,684 0.534 164,491 

Standard Deviation 0.748 8,534 0.021 9.88 0.731 12,825 

Coeff. of Variance 0.723 0.596 0.823 0.282 1,002 0.581 

Skewness 0.777 0.934 4,065 0.792 1.20 -0.161 

Kurtosis 2,974 2,673 29,689 5,473 5,364 1,765 
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model. 

In this study, model selection is more visual 

because it meets the following requirements are 

data shows a gradual increase in variability with 

distance and then levels off, a finite range of spatial 

correlation is observed, and the variogram flattens 

near the sill. The fitting process will produce 

parameters in the form of a nugget effect, which 

shows the variation over a short distance, sill, the 

average variance of the sample in general, and 

 

 

 
Figure 8. Ni variogram fitting results on the limonite layer.  

 

Figure 9. Ni variogram fitting results on saprolite layer.  
 

 
 

Table 5. Results of fitting variogram parameters with a spherical model in the limonite and saprolite layer. 

 
Layer Data Nuggets Sill Range 

Ni 0.656 0.386 165,612 

    Limonite     

Fe 0.606 0.332 237,333 

Co 0.749 0.210 206,458 

SiO2 0.519 0.472 285,897 

CaO 0.539 0.201 209,352 

MgO 0.685 0.248 158,215 

Saprolite 

Ni 0.788 0.299 199,812 

Fe 0.154 0.910 221,574 

Co 0.212 0.723 267,887 

SiO2 0.061 0.709 285,044 

CaO 0.058 0.755 207,793 

MgO 0.499 0.598 236,368 
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range, which is the distance between related data. 

The best-fitted variogram model was considered for 

ordinary kriging estimation [31]. These parameters 

will then become a reference in estimating the level 

and number of resources. Semivariogram analysis 

was carried out based on composite data of limonite 

and saprolite layers in string format and all existing 

grade data in the research area.  The model fitting 

results of Ni variogram in limonite and saprolite 

layers can be seen in Figure 8 and Figure 9.  

The parameters of the variogram fitting results 

can be seen in Tables 6 and 7. In semivariogram 

analysis, values related to the anisotropy parameter 

can also be obtained to be used as parameters in the 

search for estimates. Anisotropy is a condition 

where the semivariogram depends on distance (h) 

 

 

 
 
 

Table 6. Nickel (limonite layer) variogram results. 

 
Direction N00E N450E N900E N1350E 

Nugget (%2 Ni) 0.656 0.656 0.656 0.656 

Sill (%2 Ni) 0.386 0.386 0.386 0.386 

Range (m) 165.610 146.070 150.780 199.670 

 

Figure 10.  Nickel content anisotropy model. 
 

 
Table 7.  Results of anisotropy parameters in limonite and saprolite layers. 

 

Layer Data rate 
Ellipsoid orientation Anisotropy ratio 

Plunge Bearings Dip Semi-major Minor 

Ni 0.000 0.000 89.627 1.000 1.127 

    Limonite     

Fe 0.000 179.387 89.956 1.000 1.000 

Co 0.000 179.981 89.955 1.000 1.000 

SiO2 0.000 0.000 89.793 1.015 1.000 

CaO 0.000 179.373 89.336 1.629 2.405 

MgO 0.000 179.998 89.497 1.000 1.000 

Saprolite 

Ni 0.000 179.993 89.403 1.390 1.033 

Fe 0.000 179.955 89.741 1.069 1.000 

Co 0.000 179.992 89.967 1.000 1.000 

SiO2 0.000 0.116 89.901 1.281 1.000 

CaO 0.000 179.980 89.253 1.283 1.301 

MgO 0.000 179.981 89.954 1.000 1.000 
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and direction, so different values for several 

parameters can be obtained. The results of the 

variogram anisotropy calculations are shown in 

Table 8.  

Geometric anisotropy or ellipsoid is a popular 

method in geostatistical analysis for producing 

variograms with varying ranges in different 

directions (azimuth) and roughly identical sill 

variance. Ellipsoid anisotropy is critical in mining 

when a resource geologist wants to understand the 

spatial continuity of variables associated with 

geological controls on mineralization. Generally, 

variogram modeling is conducted in a three-

dimensional (3D) dataset across a minimum of four 

horizontal orientations (namely, north-south (N–S), 

northeast-southwest (NE–SW), east-west (E–W), 

and southeast-northwest (SE–NW)), along with one 

vertical orientation or downhole direction. In order 

to fit the 3D ellipsoid anisotropy model, we set the 

statistical variance equal to the sum of the nugget 

and sill variances of all variograms. The Nickel 

Content Anisotropy Model can be seen in Figure 

10. Variogram analysis of composite Ni content 

data was carried out in various directions by 

adjusting the azimuth and dip parameters to 

determine the continuity of the data in 3D so that 

representative estimation parameters were obtained 

in the estimation. Tables 7 and 8 are the results of 

anisotropy calculations from creating variograms in 

several different directions.  

 

3.5. Nickel Resource Estimation and Classification 

Nickel resource estimation was carried out using 

the ordinary kriging method. Resource estimation is 

carried out at grade points based on the size of the 

empty model block. There are several references for 

determining block size, one of which is often used 

is that the smallest size of a block should not be less 

than 0.25 of the average borehole interval [33]-[35]. 

The dimensions of blocks are chosen significantly 

smaller than the half spacing of the drilling grid, 

acceptable results are usually not obtained unless 

the grade has much continuity; it means that the 

value of the nugget effect is very low and range of 

variogram is very high [21][36]. The dimensions of 

estimation blocks should be chosen by considering 

the interspacing of boreholes and other engineering 

considerations.  In this study, a block size of 12.5 m 

was used. This is based on a 50 to 100 m grid 

drilling spacing. The block elevation is adjusted to 

the level that will be used in mining [34][37]. Then, 

the estimation results for each level in each block 

will be obtained. Estimates are based on the 

parameter values resulting from semivariogram 

fitting analysis and anisotropy parameters. Next, 

each block is given a color indicator, arranged 

 

 

 
 

Figure 11. Cross-sectional estimation results of the block model in two dimensions.  
 

 

Figure 12.  Block model in two-dimensional appearance (plan view). 
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based on the quantity of Ni content in each block. 

The color indicator shows the results of the Ni 

content estimation. The blue, red, yellow, and green 

color show that the block has a Ni content of 0.0%–

0.9%, 0.9%–1.4%, 1.4%–1.7%, and 1.7%–4.13%, 

respectively. The cross-sectional estimation results 

of the block model in two dimensions and the block 

model in two-dimensional view (plan view) can be 

seen in Figures 11 and 12.  

The estimation results are not only in the form of 

grade data, but the estimation results are also in the 

form of values related to geostatistical parameters 

that can be used for the resource classification 

process. One of the geostatistical parameter values 

in question is KE. The following parameters for 

resource and reserve classification based on the 

kriging efficiency ratio [38]. The calculation of KE 

aims to obtain the results of the resulting resource 

classification because the determination of resource 

classification for minerals is seen from the variation 

in the distribution of mineral content. KE is 

expressed by Kriging variance normalized by block 

variance in the form of a percentage. If the KE 

value is high; the kriging variance is low or vice 

versa. The classification of resources based on KE 

is as follows: (1) Inferred blocks with a KE value < 

0.3; (2) Indicated blocks having a value of 0.3 < KE 

< 0.5; and (3) Measured blocks having a KE value 

> 0.5. Next, constraints are created to display 

blocks or areas for each resource classification in 

the iron cap, limonite, and saprolite layers. These 

constraints are also used as a reference for the 

process of reporting resource estimates.  

The next resource estimation stage is a feasibility 

study and reserve calculation; the final stage is 

mining operation and processing. Coal mining is a 

long-term activity involving high technology and 

capital intensive. In addition, the fundamental 

characteristic of the coal mining industry is to clear 

land and change the landscape so that it has the 

potential to cause environmental, social, and 

economic impacts on the community. 

Environmentally, coal mining impacts landscape 

change, decreased soil fertility, threats to 

biodiversity, decreased water quality, decreased air 

quality, and cause environmental pollution. To 

avoid these negative impacts, mining must follow 

the concept of good mining practice, namely mining 

that follows good and correct mining rules, starting 

from exploitation and resource estimation.   

 

4. CONCLUSIONS 

 

According to the research objectives, the data are 

completed based on the available data, and the 

stages of descriptive statistical and variographic 

analysis have been carried out. Ordinary kriging 

and KE methods were used to estimate nickel 

resources. The descriptive statistical analysis results 

obtained a data pattern with a normal distribution, 

with a CV value of 0.5 to 1.5. Histogram analysis 

shows a slight positive skewness and a sharp peak. 

From the variographic analysis, the appropriate 

variogram model is the spherical model; there is 

also an anisotropy structure, which shows different 

variations in specific directions. The model block 

used has dimensions of 12.5 m, which is based on 

the drilling grid spacing. Nickel resource estimation 

uses the KE method, which is a proven method. The 

results are the number of measured, indicated, and 

inferred nickel resources of 39,075,571; 1,259,362; 

and 3,007,768 tons, respectively, with an overall 

average Ni content of 1.16%.    

 

AUTHOR INFORMATION 

 

Corresponding Author 

Irfan Marwanza — Department of Mining, 

University of Trisakti, Jakarta-11450 

(Indonesia); 

orcid.org/0000-0003-3544-4886   

Email: irfanm@trisakti.ac.id 

 

Authors 

Danu Putra — Department of Mining, 

University of Trisakti, Jakarta-11450 

(Indonesia); 

orcid.org/0000-0002-7950-2593  

Masagus Ahmad Azizi — Department of 

Mining, University of Trisakti, Jakarta-11450 

(Indonesia); 

orcid.org/0000-0003-2965-8124  

Wiwik Dahani — Department of Mining, 

University of Trisakti, Jakarta-11450 

(Indonesia); 

orcid.org/0000-0002-6791-3117  

Rhazes Eesha Gumay — Business Analytics, 

University of Western Australia, Crawley WA-

 

 

https://orcid.org/0000-0003-3544-4886
mailto:irfanm@trisakti.ac.id
https://orcid.org/0000-0002-7950-2593
https://orcid.org/0000-0003-2965-8124
https://orcid.org/0000-0002-6791-3117


J. Multidiscip. Appl. Nat. Sci. 

395 

6009 (Australia); 

orcid.org/0009-0005-0271-4845  

Silvia Immanuela Sahetapy — Department of 

Mining, University of Trisakti, Jakarta-11450 

(Indonesia); 

orcid.org/0009-0003-8808-8288  

 

Author Contributions 

The authors contributed equally to this work.  

 

Conflicts of Interest 

The authors declare no conflict of interest. 

 

ACKNOWLEDGEMENT 

 

All of us as authors would like to thank PT 

Prosperous Lestari Primatama (MLP) which has 

gave permission to use company data in this 

research and has helped throughout the author did 

research at the PT MLP Molore Site. The author 

also would like to thank the Mining Engineering 

Study Program at Trisakti University for their 

support.  

 

REFERENCES 

 

[1] A. van der Ent, A. J. M. Baker, M. M. J. van 

Balgooy, and A. Tjoa. (2013). "Ultramafic 

nickel laterites in Indonesia (Sulawesi, 

Halmahera): Mining, nickel 

hyperaccumulators and opportunities for 

phytomining". Journal of Geochemical 

Exploration. 128 : 72-79. 10.1016/

j.gexplo.2013.01.009. 

[2] L. Lu, Y. Lei, Y. Yang, H. Zheng, W. Wang, 

Y. Meng, C. Meng, and L. Zha. (2023). 

"Assessing nickel sector index volatility 

based on quantile regression for Garch and 

Egarch models: Evidence from the Chinese 

stock market 2018–2022". Resources Policy. 

82. 10.1016/j.resourpol.2023.103563. 

[3] S. A. Al-Khirbash. (2020). "Mineralogical 

characterization of low-grade nickel laterites 

from the North Oman Mountains: Using 

mineral liberation analyses – scanning 

electron microscopy-based automated 

quantitative mineralogy". Ore Geology 

Reviews. 120. 10.1016/

j.oregeorev.2020.103429. 

[4] F. Usman, G. M. Tinungki, and E. T. 

Herdiani. (2021). "Efficiency of Ni Content 

in Laterite Nickel Deposits through The 

Least Square Method Approach on 

Semivariogram". Journal of Physics: 

Conference Series. 2123 (1). 10.1088/1742-

6596/2123/1/012015. 

[5] X. Yan, T. Yang, Y. Xu, L. Tosi, E. 

Stouthamer, H. Andreas, J. Lin, and X. 

Huang. (2019). "Impact, Mechanism, 

Monitoring of Land Subsidence in Coastal 

Cities (Annual Work of IGCP 663)". Acta 

Geologica Sinica - English Edition. 93 (S3): 

158-159. 10.1111/1755-6724.14276. 

[6] S. S. P, Y. Sibaroni, and M. Nur Heriawan. 

(2016). "Spatial Analysis 3d Geology Nickel 

Using Ordinary Kriging Method". Jurnal 

Teknologi. 78 (5).  10.11113/jt.v78.8340. 

[7] M. Mälicke, A. Guadagnini, and E. Zehe. 

(2023). "SciKit-GStat Uncertainty: A 

software extension to cope with uncertain 

geostatistical estimates". Spatial Statistics. 

54. 10.1016/j.spasta.2023.100737. 

[8] M. N. Heriawan and K. Koike. (2008). 

"Identifying spatial heterogeneity of coal 

resource quality in a multilayer coal deposit 

by multivariate geostatistics". International 

Journal of Coal Geology. 73 (3-4): 307-330. 

10.1016/j.coal.2007.07.005. 

[9] W. S. Bargawa. (2022). "The Performance of 

Estimation Techniques for Nickel Laterite 

Resource Modeling". Jurnal Teknologi. 84 

(4): 1-8. 10.11113/

jurnalteknologi.v84.17560. 

[10] T. Wendler and S. Gröttrup. (2021). In: "Data 

Mining with SPSS Modeler, ch. Chapter 3". 

191-305. 10.1007/978-3-030-54338-9_3. 

[11] R. G. Arancibia, P. Llop, and M. Lovatto. 

(2023). "Nonparametric prediction for 

univariate spatial data: Methods and 

applications". Papers in Regional Science. 

102 (3): 635-673. 10.1111/pirs.12735. 

[12] P. Kumar, B. Rao, A. Burman, S. Kumar, and 

P. Samui. (2023). "Spatial variation of 

permeability and consolidation behaviors of 

soil using ordinary kriging method". 

Groundwater for Sustainable Development. 

20. 10.1016/j.gsd.2022.100856. 

 

 

https://orcid.org/0009-0005-0271-4845
https://orcid.org/0009-0003-8808-8288
https://doi.org/10.1016/j.gexplo.2013.01.009
https://doi.org/10.1016/j.gexplo.2013.01.009
https://doi.org/10.1016/j.resourpol.2023.103563
https://doi.org/10.1016/j.oregeorev.2020.103429
https://doi.org/10.1016/j.oregeorev.2020.103429
https://doi.org/10.1088/1742-6596/2123/1/012015
https://doi.org/10.1088/1742-6596/2123/1/012015
https://doi.org/10.1111/1755-6724.14276
https://doi.org/10.11113/jt.v78.8340
https://doi.org/10.1016/j.spasta.2023.100737
https://doi.org/10.1016/j.coal.2007.07.005
https://doi.org/10.11113/jurnalteknologi.v84.17560
https://doi.org/10.11113/jurnalteknologi.v84.17560
https://doi.org/10.1007/978-3-030-54338-9_3
https://doi.org/10.1111/pirs.12735
https://doi.org/10.1016/j.gsd.2022.100856


J. Multidiscip. Appl. Nat. Sci. 

396 

[13] C. Y. S. Ip, H. Rahardjo, and A. Satyanaga. 

(2019). "Spatial variations of air-entry value 

for residual soils in Singapore". Catena. 174 : 

259-268. 10.1016/j.catena.2018.11.012. 

[14] N. A. Amri, W. S. Bargawa, and T. A. 

Cahyadi. (2021). "Multi Criterion Priority On 

Kriging Of Gold Resources Prediction". 

Journal Techno. 7 (2).   

[15] R. Faidatulaila, I. Marwanza, and T. T. 

Purwiyono. (2023). "Variography analysis on 

the assessment of coal deposit quality using 

the ordinary kriging method". AIP 

Conference Proceedings.  

10.1063/5.0126896. 

[16] B. Anggara, I. Marwanza, M. Ahmad Azizi, 

W. Dahani, and Subandrio. (2021). "Fitting 

the variogram model of nickel laterite using 

root means square error in Morowali, Central 

Sulawesi". IOP Conference Series: Earth and 

Environmental Science. 882 (1).  

10.1088/1755-1315/882/1/012042. 

[17] M. Abzalov. (2016). In: "Applied Mining 

Geology, (Modern Approaches in Solid Earth 

Sciences, ch. Chapter 17". 233-237. 

10.1007/978-3-319-39264-6_17. 

[18] C. Zhou, L. Wang, and Y. Chen. (2023). 

"Active learning-based structural reliability 

evaluation Kriging model and sequential 

importance sampling". Structures. 56. 

10.1016/j.istruc.2023.104956. 

[19] Y. Pang, Y. Wang, X. Lai, S. Zhang, P. 

Liang, and X. Song. (2023). "Enhanced 

Kriging leave-one-out cross-validation in 

improving model estimation and 

optimization". Computer Methods in Applied 

Mechanics and Engineering. 414. 10.1016/

j.cma.2023.116194. 

[20] D. Ali Akbar. (2012). "Reserve estimation of 

central part of Choghart north anomaly iron 

ore deposit through ordinary kriging 

method". International Journal of Mining 

Science and Technology. 22 (4): 573-577. 

10.1016/j.ijmst.2012.01.022. 

[21] D. G. Krige. (1997). In: "Geostatistics 

Wollongong’ 96, (Quantitative Geology and 

Geostatistics, ch. Chapter 14". 799-810. 

10.1007/978-94-011-5726-1_14. 

[22] C. Munyati and N. I. Sinthumule. (2021). 

"Comparative suitability of ordinary kriging 

and Inverse Distance Weighted interpolation 

for indicating intactness gradients on 

threatened savannah woodland and forest 

stands". Environmental and Sustainability 

Indicators. 12. 10.1016/j.indic.2021.100151. 

[23] W. A. K. Conoras and A. A. Lamburu. 

(2020). "Modeling and Resource 

Classification Lateritic Nickel Deposits on a 

Heterogeneous Block in The Haul-Sagu Area 

using Estimation and Simulation 

Geostatistical Method". Journal of Physics: 

Conference Series. 1569 (4). 10.1088/1742-

6596/1569/4/042079. 

[24] S. Al-Ali and S. Al-Khafaji. (2023). "Spatial 

distribution and reserve estimation of sand 

and gravel deposits using geostatistical 

methods in west Basrah, southern Iraq". 

Kuwait Journal of Science. 50 (2): 127-137. 

10.1016/j.kjs.2023.02.017. 

[25] M. L. C. M. Henckens, F. H. B. Biermann, 

and P. P. J. Driessen. (2019). "Mineral 

resources governance: A call for the 

establishment of an International 

Competence Center on Mineral Resources 

Management". Resources, Conservation and 

Recycling. 141 : 255-263. 10.1016/

j.resconrec.2018.10.033. 

[26] C. Tang, M. Irfan, A. Razzaq, and V. Dagar. 

(2022). "Natural resources and financial 

development: Role of business regulations in 

testing the resource-curse hypothesis in 

ASEAN countries". Resources Policy. 76. 

10.1016/j.resourpol.2022.102612. 

[27] F. Isatelle and J. Rivoirard. (2019). "Mineral 

Resources classification of a nickel laterite 

deposit: Comparison between conditional 

simulations and specific areas". Journal of 

the Southern African Institute of Mining and 

Metallurgy. 119 (10). 10.17159/2411-

9717/660/2019. 

[28] P. C. F. Crowson. (2011). "Mineral reserves 

and future minerals availability". Mineral 

Economics. 24 (1): 1-6. 10.1007/s13563-011-

0002-9. 

[29] O. Zerzour, L. Gadri, R. Hadji, F. Mebrouk, 

and Y. Hamed. (2021). "Geostatistics-Based 

Method for Irregular Mineral Resource 

Estimation, in Ouenza Iron Mine, 

Northeastern Algeria". Geotechnical and 

 

 

https://doi.org/10.1016/j.catena.2018.11.012
https://doi.org/10.1063/5.0126896
https://doi.org/10.1088/1755-1315/882/1/012042
https://doi.org/10.1007/978-3-319-39264-6_17
https://doi.org/10.1016/j.istruc.2023.104956
https://doi.org/10.1016/j.cma.2023.116194
https://doi.org/10.1016/j.cma.2023.116194
https://doi.org/10.1016/j.ijmst.2012.01.022
https://doi.org/10.1007/978-94-011-5726-1_14
https://doi.org/10.1016/j.indic.2021.100151
https://doi.org/10.1088/1742-6596/1569/4/042079
https://doi.org/10.1088/1742-6596/1569/4/042079
https://doi.org/10.1016/j.kjs.2023.02.017
https://doi.org/10.1016/j.resconrec.2018.10.033
https://doi.org/10.1016/j.resconrec.2018.10.033
https://doi.org/10.1016/j.resourpol.2022.102612
https://doi.org/10.17159/2411-9717/660/2019
https://doi.org/10.17159/2411-9717/660/2019
https://doi.org/10.1007/s13563-011-0002-9
https://doi.org/10.1007/s13563-011-0002-9


J. Multidiscip. Appl. Nat. Sci. 

397 

Geological Engineering. 39 (5): 3337-3346. 

10.1007/s10706-021-01695-1. 

[30] S. M. Jowitt and B. A. McNulty. (2021). 

"Geology and Mining: Mineral Resources 

and Reserves: Their Estimation, Use, and 

Abuse". SEG Discovery. 125 : 27-36. 

10.5382/Geo-and-Mining-11. 

[31] M. M. Zaki, S. Chen, J. Zhang, F. Feng, A. 

A. Khoreshok, M. A. Mahdy, and K. M. 

Salim. (2022). "A Novel Approach for 

Resource Estimation of Highly Skewed Gold 

Using Machine Learning Algorithms". 

Minerals. 12 (7). 10.3390/min12070900. 

[32] M. Uyan and A. E. Dursun. (2021). 

"Determination and modeling of lignite 

reserve using geostatistical analysis and 

GIS". Arabian Journal of Geosciences. 14 

(4).  10.1007/s12517-021-06633-2. 

[33] A. A. Daya and H. Bejari. (2014). "A 

comparative study between simple kriging 

and ordinary kriging for estimating and 

modeling the Cu concentration in Chehlkureh 

deposit, SE Iran". Arabian Journal of 

Geosciences. 8 (8): 6003-6020. 10.1007/

s12517-014-1618-1. 

[34] M. J. Mihalasky. (2016). "Mineral Resource 

Estimation (M.E. Rossi and C.V. Deutsch)". 

Economic Geology. 111 (1): 272-274. 

10.2113/econgeo.111.1.272. 

[35] A. Daya. (2015). "Ordinary kriging for the 

estimation of vein type copper deposit: A 

case study of the Chelkureh, Iran". Journal of 

Mining and Metallurgy A: Mining. 51 (1): 1-

14. 10.5937/jmma1501001d. 

[36] T. B. Afeni, V. O. Akeju, and A. E. 

Aladejare. (2021). "A comparative study of 

geometric and geostatistical methods for 

qualitative reserve estimation of limestone 

deposit". Geoscience Frontiers. 12 (1): 243-

253. 10.1016/j.gsf.2020.02.019. 

[37] Y. Sun, J. Zuo, M. Karakus, L. Liu, H. Zhou, 

and M. Yu. (2021). "A New Theoretical 

Method to Predict Strata Movement and 

Surface Subsidence due to Inclined Coal 

Seam Mining". Rock Mechanics and Rock 

Engineering. 54 (6): 2723-2740. 10.1007/

s00603-021-02424-z. 

[38] M. Taghvaeenezhad, M. Shayestehfar, P. 

Moarefvand, and A. Rezaei. (2020). 

"Quantifying the criteria for classification of 

mineral resources and reserves through the 

estimation of block model uncertainty using 

geostatistical methods: a case study of 

Khoshoumi Uranium deposit in Yazd, Iran". 

Geosystem Engineering. 23 (4): 216-225. 

10.1080/12269328.2020.1748524.  

 

 

https://doi.org/10.1007/s10706-021-01695-1
https://doi.org/10.5382/Geo-and-Mining-11
https://doi.org/10.3390/min12070900
https://doi.org/10.1007/s12517-021-06633-2
https://doi.org/10.1007/s12517-014-1618-1
https://doi.org/10.1007/s12517-014-1618-1
https://doi.org/10.2113/econgeo.111.1.272
https://doi.org/10.5937/jmma1501001d
https://doi.org/10.1016/j.gsf.2020.02.019
https://doi.org/10.1007/s00603-021-02424-z
https://doi.org/10.1007/s00603-021-02424-z
https://doi.org/10.1080/12269328.2020.1748524

	Geostatistical Modeling using Ordinary Kriging for Estimating Nickel Resources in Sulawesi Indonesia
	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1. Materials
	2.2. Methods
	2.2.1. Statistics Univariate
	2.2.2. Statistics Spatial
	2.2.3. Ordinary Kriging Method
	2.2.4. Mineral Resource Classification

	3. RESULTS AND DISCUSSIONS
	3.1. Database
	3.2. Block Model Construction
	3.2.1. Topographic Model
	3.2.2. Geological Model
	3.2.3. Nickel Modeling using the Block Model Method
	3.3. Statistical Analysis
	3.4. Semivariogram Analysis
	3.5. Nickel Resource Estimation and Classification

	4. CONCLUSIONS
	AUTHOR INFORMATION
	Corresponding Author
	Authors
	Author Contributions
	Conflicts of Interest

	ACKNOWLEDGEMENT
	REFERENCES

