Fixed Point Theorems for Semigroups of Lipschitzian Mappings

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by Pandawa Institute of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by Pandawa Institute and/or its licensors”

This Accepted Manuscript is © 2023 The Author(s). Published by Pandawa Institute

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 International License, this Accepted Manuscript is available for reuse under a CC BY 4.0 International License immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the license https://creativecommons.org/licenses/by/4.0/.

Although reasonable endeavors have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on Pandawa Institute once published for full citation and copyright details, as permissions may be required. All third-party content is fully copyright protected and is not published on a gold open access basis under a CC BY license, unless that is specifically stated in the figure caption in the Version of Record.

View the article online for updates and enhancements.
Fixed Point Theorems for Semigroups of Lipschitzian Mappings

Saiful Marom¹,a) and Muhammad Istiqilal¹,b)

¹Department of Mathematics Education, Salatiga State Islamic University (UIN Salatiga), Salatiga-50716 (Indonesia)

a)Corresponding: saifulmarom@iainsalatiga.ac.id,
b)m.istiqlal@uinsalatiga.ac.id

ORCIDs:
First AUTHOR : https://orcid.org/0000-0003-3963-306X
Second AUTHOR : https://orcid.org/0000-0002-6045-2135

ACKNOWLEDGEMENT

This article is written based on the results of research funded independently by the author. The contents are the sole responsibility of the author.

AUTHOR CONTRIBUTIONS

These authors contributed equally to this work.

CONFLICT OF INTEREST

The author(s) declared no conflict of interest.
Fixed Point Theorems for Semigroups of Lipschitzian Mappings

Abstract. The main purpose of this paper is to extend the results of fixed point theorems for lipschitzian semigroups. The proofs we give follow the results of Ishihara, Suantai and Puengrattana theorems. Using one of the proofs, we also develop a fixed point theorem result for nonempty asymptotically total mapping semigroups on uniformly convex Banach spaces.

Keywords: semitopological semigroup; lipschitzian type semigroup; fixed point

1. INTRODUCTION

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each a ∈ S the mappings s → a · s and s → s · a from S to S are continuous. Let U be a nonempty subset of Banach space E. Then, family $\mathcal{S} = \{T_s : s \in S\}$ of mappings from U into itself is said to be a lipschitzian type semigroup on U if \mathcal{S} satisfies the following:

a) $T_{st}(x) = T_s T_t(x)$ for all $s, t \in S$ and $x \in U$, \hspace{1cm} (1)

b) the mapping $(s, x) \mapsto T_s(x)$ from $S \times U$ into U is continuous when $S \times U$ has the product topology.

c) T_s is continuous for all $s \in S$, and \hspace{1cm} (2)

d) there exists positive net $\{k_s\}$ such that for each $x \in U$ we have $\limsup_s c_s(x) = 0$, where

$$c_s(x) = \max\left\{\sup_{y \in U} (\|T_s(x) - T_s(y)\| - k_s\|x - y\|), 0\right\}$$

The class of lipschitzian type semigroups was introduced by Dung and Tan [1]. If $k_s = k$ for all $s \in S$, then a lipschitzian type semigroup reduces to a uniformly k-lipschitzian type semigroup [2]-[5]. Particularly, if $k_s = 1$ for all $s \in S$, thus, a lipschitzian type semigroup reduces to an asymptotically nonexpansive type semigroup. It is easy to see that the class of lipschitzian type semigroups contains the class of lipschitzian semigroups [6]-[8].

A semitopological semigroup S is left reversible if any two closed right ideals of S have nonvoid intersection. In this case, (S, \gg) is a directed system when the binary relation “\gg” on S is defined by $b \gg a$ if and only if $\{a\} \cup aS \supseteq \{b\} \cup bS$. Dhompongsa et al. [9], Downing and Ray [10], and Ishihara and Takahashi [11] proved that in a Hilbert space a uniformly k-lipschitzian semigroup with $k < \sqrt{2}$ has a common fixed point. Later, Ishihara [11][12]
generalized a result by proving that a lipschitzian semigroup in a Hilbert space has a common fixed point if $\limsup_s k_s < \sqrt{2}$. Casini and Maluta [13] and Ishihara and Takahashi [14] proved that a uniformly k-lipschitzain semigroup in a Banach space has a common fixed point if $k < \tilde{N}(E)^{-1/2}$, where $\tilde{N}(E)$ is the constant of uniformity of normal structure. Again, Ishihara [14] generalized a result by proving that a lipschitzian semigroup in a Banach space has a common fixed point if $\limsup_s k_s < \tilde{N}(E)^{-1/2}$. In these results, except [12], domain U of semigroups were assumed to be closed and convex [15-17].

Let S be a left reversible semitopological semigroup and U be a nonempty subset of Banach space E. Following Suantai and Puengrattana [18], family $\mathcal{S} = \{T_s : s \in S\}$ of mappings from U into itself is said to be a total asymptotically nonexpansive semigroup on U if \mathcal{S} satisfies (1) and (2).

a) for every $x \in U$, the mapping $s \mapsto T_s x$ from S into U is continuous, and

b) there exists nonnegative real numbers k_s, μ_s with $\lim_s k_s = 0$, $\lim_s \mu_s = 0$, and a strictly increasing continuous function $\phi : [0, \infty) \to [0, \infty)$ with $\phi(0) = 0$ such that

$$
\|T_s x - T_s y\| \leq \|x - y\| + k_s \phi(\|x - y\|) + \mu_s$$

for all $x, y \in U$ and $s \in S$.

If $\phi(\lambda) = \lambda$, then a total asymptotically nonexpansive semigroup reduces to a generalized asymptotically nonexpansive semigroup. If $\phi(\lambda) = \lambda$ and $k_s = 0$ for all $s \in S$, then a total asymptotically nonexpansive semigroup reduces to an asymptotically nonexpansive semigroup. If $\phi(\lambda) = \lambda$ and $k_s = \mu_s = 0$ for all $s \in S$, then a total asymptotically nonexpansive semigroup reduces to a nonexpansive semigroup [19]-[22]. Suantai and Puengrattana proved that a total asymptotically nonexpansive semigroup in a uniformly convex Banach space has a common fixed point [18]. Again, in this result, the domain of the semigroup was assumed to be closed and convex.

2. MATERIALS AND METHODS

In this paper, we first show that if S is left reversible semitopological semigroup and if there exists a closed subset C of U such that $\cap_s \overline{\text{co}}\{T_t x : t \succ s\} \subseteq C$ for all $x \in U$ then a lipschitzian type semigroup on nonconvex domain in a Hilbert space with $\limsup_s k_s < \sqrt{2}$ has a common fixed point. Next, we prove that the theorem is valid in a Banach space E if $\limsup_s k_s < \sqrt{2}$.
These results extend the main results in Ishihara [12]. By a method of the proof of the theorem, we also prove that $\mathcal{S} = \{T_s : s \in S\}$ a total asymptotically nonexpansive semigroup on nonconvex domain in Banach space E still has a common fixed point. This result improves Theorem 3.3 [18].

3. RESULTS AND DISCUSSION

Let $\{B_\alpha\}_{\alpha \in \Lambda}$ be a decreasing net of bounded subsets of a Banach space E. For a nonempty subset C of E defined as

$$r(\{B_\alpha\}, x) = \inf \sup \{\|x - y\| : y \in B_\alpha\}$$

$$r(\{B_\alpha\}, C) = \inf \{r(\{B_\alpha\}, x) : x \in C\}$$

$$\mathcal{A}(\{B_\alpha\}, C) = \{x \in C : r(\{B_\alpha\}, x) = r(\{B_\alpha\}, C)\}$$

We know that $r(\{B_\alpha\}, .)$ is a continuous convex function on E which satisfies the following:

$$|r(\{B_\alpha\}, x) - r(\{B_\alpha\}, y)| \leq \|x - y\| \leq r(\{B_\alpha\}, x) + r(\{B_\alpha\}, y)$$

for all $x, y \in E$. It is easy to see that if E is reflexive and if C is closed convex then $\mathcal{A}(\{B_\alpha\}, C)$ is nonempty. Moreover, if E is uniformly convex then it consists of a single point in which agreed with previous literature [23]. For a subset C, we denote by $\text{co} C$ the closure of the convex hull of C, by $d(C)$ the diameter of C and by $R(C)$ the Chebyshev radius of C, i.e. $R(C) = \inf \sup \|x - y\|$. We define the uniformity $\bar{N}(E)$ of normal structure E is the number.

$$\sup \left\{ \frac{R(C)}{d(C)} \right\}$$

where the supremum is taken over all nonempty bounded convex $C \subseteq E$ with $d(C) > 0$. It is also known that if $\bar{N}(E) < 1$, then E is reflexive, which is in line with previous literature [14].

The following lemmas play a crucial role in the proof of the theorems. We state the first lemma which was proved in the previous works [11,24] as:

Lemma 2.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let $\{B_\alpha\}_{\alpha \in \Lambda}$ be a decreasing net of nonempty bounded subsets of H and let $\{a\} = \mathcal{A}(\{B_\alpha\}, C)$. Then

$$r(\{B_\alpha\}, C)^2 + \|a - x\|^2 \leq r(\{B_\alpha\}, x)^2$$

for all $x \in C$.
Lemma 2.2. Let C be a nonempty subset of a Hilbert space H [13]. Let $\{B_\alpha\}_{\alpha \in \Lambda}$ be a decreasing net of nonempty bounded subset of C. Then the asymptotic center a of $\{B_\alpha\}_{\alpha \in \Lambda}$ in C is an element of $\bigcap_\alpha \overline{co}B_\alpha$.

We also state the third lemma which was proved before [14] as:

Lemma 2.3. Let C be a closed convex subset of a reflexive Banach space E. Let $\{B_\alpha\}_{\alpha \in \Lambda}$ be a decreasing net of nonempty bounded closed convex subset of C and let $B = \bigcap_\alpha B_\alpha$. Then the following expression is obtained.

$$r(\{B_\alpha\}, B) \leq \overline{N}(E) \inf_\alpha d(B_\alpha)$$

3.1. Fixed Point Theorems. We now prove a fixed point theorem for lipschitzian type semigroups defined on nonconvex domain in Hilbert spaces.

Theorem 3.1. Let U be a nonempty subset of a Hilbert space H and let S be a left reversible semitopological semigroup. Let $\mathcal{S} = \{T_s : s \in S\}$ be a lipschitzian type semigroup on U with $\limsup_s k_s < \sqrt{2}$. Suppose that $\{T_s y : s \in S\}$ is bounded for some $y \in U$ and there exists a closed subset C of U such that $\bigcap_\alpha \overline{co}\{T_t x : t \geq s\} \subseteq C \subseteq U$ for all $x \in U$. Then there exists a $z \in C$ such that $T_s z = z$ for all $s \in S$.

Proof. Let $B_s(x) = \{T_t x : t \geq s\}$ for $s \in S$ and $x \in U$. Define $\{x_n : n \geq 0\}$ by induction as follows:

$$x_0 = y$$

$$\{x_{n+1}\} = \mathcal{A}(\{B_s(x_n)\}, \overline{co}U) \text{ for } n \geq 1$$

By Lemma 2.2, we have $x_n \in \overline{co} \bigcap_{s \in S} B_s(x_{n-1}) \subseteq C \subseteq U$ and hence $\{x_n\}$ is well defined. Let $r_n(x) = r(\{B_s(x_{n-1})\}, x)$ and $r_n = r(\{B_s(x_{n-1})\}, \overline{co}U)$ for $n \geq 1$. Then by Lemma 2.1, we have $\|x - u\|^2 \leq r_n(x)^2 - r_n^2$ for all $u \in \overline{co}U$ and $n \geq 1$. Putting $u = T_s x_n$, we have

$$\|x_n - T_s x_n\|^2 \leq r_n(T_s x_n)^2 - r_n^2$$

which implies

$$\leq \left(\limsup_t \|T_t x_{n-1} - T_s x_n\| \right)^2 - r_n^2$$

By the given condition, we also have

$$\leq \left(\limsup_t \|T_t x_{n-1} - T_s x_n\| \right)^2 - r_n^2$$

Putting $u = T_s x_n$, we have

$$= \left(k_s \limsup_t \|T_t x_{n-1} - x_n\| + c_s(x_n) \right)^2 - r_n^2$$

$$= (k_s r_n + c_s(x_n))^2 - r_n^2$$

where $k_s = \limsup_t \|T_t x_{n-1} - x_n\|$.
Let \(\varsigma = \limsup_s k_s^2 - 1 \). Then, we obtain

\[
\begin{align*}
\frac{r_n}{r_{n+1}}^2 \leq r_n(x_n)^2 &= \limsup_s \|x_n - T_s x_n\|^2 \\
&\leq \limsup_s (k_s r_n + c_s(x_n))^2 - r_n^2 \\
&\leq \left(r_n \left(\limsup_s k_s \right) \right)^2 - r_n^2 \\
&= \varsigma r_n^2 \leq \varsigma r_1^2
\end{align*}
\]

for all \(n \geq 1 \). Since

\[
\|x_{n+1} - x_n\|^2 \leq 2\|x_{n+1} - T_t x_n\|^2 + 2\|T_t x_n - x_n\|^2
\]

for all \(t \in S \) and \(n \geq 1 \), we have

\[
\|x_{n+1} - x_n\|^2 \leq 2\limsup_t \|T_t x_n - x_{n+1}\|^2 + 2\limsup_t \|T_t x_n - x_n\|^2
\]

\[
\leq 2r_{n+1}^2 + 2r_{n+1}(x_n)^2 \leq 4\varsigma r_1^2
\]

Therefore since \(\varsigma < 1 \), \(\{x_n\} \) is a Cauchy sequence of \(C \). Let \(x_n \to z \). For each \(s \in S \) we have

\[
\|z - T_s z\|^2 \leq 2\|z - T_t x_n\|^2 + 2\|T_t x_n - T_s z\|^2
\]

for all \(t \in S \), hence

\[
\|z - T_s z\|^2 \leq 2\limsup_t \|z - T_t x_n\|^2 + 2\limsup_t \|T_t x_n - T_s z\|^2
\]

\[
\leq 2\limsup_t \|z - T_t x_n\|^2 + 2\limsup_t \|T_s T_t x_n - T_s z\|^2 \tag{3}
\]

Note that

\[
\limsup_t \|T_t x_n - z\|^2 \leq 2\limsup_t \|T_t x_n - x_n\|^2 + 2\|x_n - z\|^2
\]

\[
\leq 2r_{n+1}(x_n)^2 + 2\|x_n - z\|^2
\]

\[
\leq 2\varsigma r_1^2 + 2\|x_n - z\|^2 \to 0 \quad \text{as} \quad n \to \infty
\]

From the continuity of \(T_s \) we also have

\[
\limsup_t \|T_s T_t x_n - T_s z\|^2 \to 0 \quad \text{as} \quad n \to \infty
\]

Hence from (3) we have \(T_s z = z \) for all \(s \in S \). This completes the proof.

From Theorem 3.1 we capture the following result announced by Ishihara [12].

Corollary 3.2. Let \(U, H, \) and \(S \) as in Theorem 3.1 and let \(S = \{T_s : s \in S\} \) be a lipschitzian semigroup on \(U \) with \(\limsup_s k_s < \sqrt{2} \). Suppose that \(\{T_s y : s \in S\} \) is bounded for some \(y \in U \) and there exists a closed subset \(C \) of \(U \) such that \(\bigcap_s \overline{\text{co}}\{T_t x : t \supseteq s\} \subseteq C \) for all \(x \in U \). Then there exists a \(z \in C \) such that \(T_s z = z \) for all \(s \in S \).
If we confine ourselves to an asymptotically nonexpansive type semigroup, we have the following result.

Teorema 3.3. Let U be a nonempty subset of a Hilbert space H and let S be a left reversible semitopological semigroup. Let $\mathcal{S} = \{T_s : s \in S\}$ be a lipschitzian type semigroup on U with $\lim \sup_{s} k_s \leq 1$. Suppose that $\{T_s x : s \in S\}$ is bounded and $\cap_t \overline{\text{co}}\{T_t x : t \geq s\} \subseteq U$ for some $x \in U$. Then there exists a $z \in C$ such that $T_s z = z$ for all $s \in S$.

Proof. Let $B_s = \{T_t x : t \geq s\}$ for $s \in S$ and let a be the asymptotic center of $\{B_s\}$ in $\overline{\text{co}} U$. Then by Lemma 2.1 and 2.2, we have

\[
\begin{align*}
\text{r}(\{B_s\}, \overline{\text{co}} U)^2 + \|a - T_t a\|^2 &\leq \text{r}(\{B_s\}, T_t a)^2 \\
&= \left(\lim \sup_s \|T_s x - T_t a\|^2\right)^2 \\
&\leq \left(\lim \sup_s \|T_t T_s x - T_t a\|^2\right)^2 \\
&\leq (k_t \text{r}(\{B_s\}, a) + c_t(a))^2
\end{align*}
\]

for all $t \in S$. Hence, we have

\[
\begin{align*}
\lim \sup_t \|T_t a - a\|^2 &\leq \lim \sup_t \left(k_t \text{r}(\{B_s\}, a) + c_t(a)\right)^2 - \text{r}(\{B_s\}, \overline{\text{co}} U)^2 \\
&\leq \left(\text{r}(\{B_s\}, a) \left(\lim \sup_t k_t\right)\right)^2 - \text{r}(\{B_s\}, \overline{\text{co}} U)^2 \\
&= \left(\left(\lim \sup_t k_t\right)^2 - 1\right) \text{r}(\{B_s\}, \overline{\text{co}} U)^2 \leq 0
\end{align*}
\]

For each $s \in S$ we have

\[
\begin{align*}
\|a - T_s a\|^2 &\leq 2\|a - T_t a\|^2 + 2\|T_t a - T_s a\|^2 \\
\end{align*}
\]

for all $t \in S$, hence

\[
\begin{align*}
\|a - T_s a\|^2 &\leq 2 \lim \sup_t \|T_t a - a\|^2 + 2 \lim \sup_{t} \|T_s T_t a - T_s a\|^2 \\
&= 2 \lim \sup_{t} \|T_s T_t a - T_s a\|^2
\end{align*}
\]

Therefore, by the continuity of T_s we have $T_s a = a$ for all $s \in S$. This completes the proof.

From Theorem 3.3 we capture the following result announced by Ishihara [12].

Corollary 3.4. Let U, H, and S as in Theorem 3.3 and $\mathcal{S} = \{T_s : s \in S\}$ be a lipschitzan semigroup on U with $\lim \sup_s k_s \leq 1$. Suppose that $\{T_s x : s \in S\}$ is bounded and
\[\cap_{s} \overline{\text{co}}\{T_{t}x : t \geq s\} \subseteq U \text{ for some } x \in U. \] Then there exists a \(z \in C \) such that \(T_{s}z = z \) for all \(s \in S. \)

Next, by a method similar to that of the proof of Theorem 3.1, we prove a fixed point theorem for Lipschitzian type semigroups defined on nonconvex domain in Banach spaces.

Theorem 3.5. Let \(U \) be a nonempty subset of a Banach space \(E \) with \(N(E) < 1 \) and let \(S \) be a left reversible semitopological semigroup. Let \(\mathcal{S} = \{T_{s} : s \in S\} \) be a Lipschitzian type semigroup on \(U \) with \(\lim \sup_{s} k_{s} < \frac{N(E)^{-1/2}}{2} \). Suppose that \(\{T_{s}y : s \in S\} \) is bounded for some \(y \in U \) and there exists a closed subset \(C \) of \(U \) such that \(\cap_{s} \overline{\text{co}}\{T_{t}x : t \geq s\} \subseteq C \) for all \(x \in U. \) Then there exists a \(z \in C \) such that \(T_{s}z = z \) for all \(s \in S. \)

Proof. Let \(B_{s}(x) = \overline{\text{co}}\{T_{t}x : t \geq s\} \) and let \(B(x) = \cap_{s} B_{s}(x) \) for \(s \in S \) and \(x \in U. \) Define \(\{x_{n} : n \geq 0\} \) by induction as follows:

\[x_{0} = y, \]
\[x_{n} \in \mathcal{A}(\{B_{s}(x_{n-1})\}, B(x_{n-1})) \text{ for } n \geq 1. \]

Well-definedness of \(\{x_{n}\} \) follows from that \(B(x) \subseteq C \subseteq U \) for all \(x \in U. \) Let \(r_{n}(x) = r(\{B_{s}(x_{n-1})\}, x) \) and \(r_{n} = r(\{B_{s}(x_{n-1})\}, B(x_{n-1})) \) for \(n \geq 1. \) Then from \(x_{n} \in B(x_{n-1}) = \cap_{s} B_{s}(x_{n-1}) \) for \(n \geq 1, \) and Lemma 2.3 we have:

\[r_{n+1}(x_{n}) = \lim \sup_{s} \|T_{s}x_{n} - x_{n}\| \leq \lim \sup_{s} \lim \sup_{t} \|T_{t}x_{n-1} - T_{s}x_{n}\| \]
\[\leq \lim \sup_{s} \lim \sup_{t} \|T_{s}T_{t}x_{n-1} - T_{s}x_{n}\| \]
\[\leq \lim \sup_{s} \lim \sup_{t}(k_{s}\|T_{t}x_{n-1} - x_{n}\| + c_{s}(x_{n})) \]
\[\leq \left(\lim \sup_{s} k_{s} \right) r_{n}(x_{n}) + \lim \sup_{s} c_{s}(x_{n}) \]
\[= \left(\lim \sup_{s} k_{s} \right) r_{n} \leq \left(\lim \sup_{s} k_{s} \right) N(E) \inf d(B_{s}(x_{n-1})) \]

and

\[\inf d(B_{s}(x_{n-1})) = \inf \sup(\|T_{a}x_{n-1} - T_{b}x_{n-1}\| : a, b \geq s) \]
\[\leq \lim \sup_{s} \lim \sup_{t} \|T_{t}x_{n-1} - T_{s}x_{n-1}\| \]
\[\leq \lim \sup_{s} \lim \sup_{t} \|T_{s}T_{t}x_{n-1} - T_{s}x_{n-1}\| \]
\[\leq \lim \sup_{s} \lim \sup_{t}(k_{s}\|T_{t}x_{n-1} - x_{n-1}\| + c_{s}(x_{n-1})) \]
\[
\leq \left(\limsup_s k_s \right) r_n(x_{n-1}) + \limsup_s c_s(x_n).
\]

\[
= \left(\limsup_s k_s \right) r_n(x_{n-1})
\]

Let \(c = \left(\limsup_s k_s^2 \right) \bar{N}(E) \). Then we have

\[
\begin{align*}
\frac{1}{\bar{N}(E)} & = \left(\limsup_s k_s^2 \right) \bar{N}(E) r_n(x_{n-1}) \\
& = c r_n(x_{n-1}) \leq c^2 r_1(x_0)
\end{align*}
\]

and

\[
\|x_{n+1} - x_n\| \leq \|z - T_s z\| \leq \|z - T_t x_n\| + \|T_t x_n - T_s z\|
\]

\[
\leq \left(\limsup_s k_s \right) \bar{N}(E) r_{n+1}(x_n) + r_{n+1}(x_n)
\]

\[
\leq \left(\bar{N}(E) \left(\limsup_s k_s \right) + 1 \right) r_1(x_0)
\]

for all \(n \geq 1 \). So, \(\{x_n\} \) is a Cauchy sequence of \(C \) and hence \(\{x_n\} \) converges to a point \(z \in C \).

For each \(s \in S \) we have

\[
\|z - T_s z\| \leq \|z - T_t x_n\| + \|T_t x_n - T_s z\|
\]

for all \(t \in S \), hence

\[
\begin{align*}
\|z - T_s z\| & \leq \limsup_t \|z - T_t x_n\| + \limsup_t \|T_t x_n - T_s z\| \\
& \leq \limsup_t \|z - T_t x_n\| + \limsup_t \|T_t T_t x_n - T_s z\| \quad (4)
\end{align*}
\]

Note that

\[
\limsup_t \|T_t x_n - z\| \leq \limsup_t \|T_t x_n - x_n\| + \|x_n - z\|
\]

\[
= r_{n+1}(x_n) + \|x_n - z\|
\]

\[
\leq c^2 r_1(x_0) + \|x_n - z\| \to 0 \quad \text{as} \quad n \to \infty
\]

From the continuity of \(T_s \) we also have

\[
\limsup_t \|T_t T_t x_n - T_s z\| \to 0 \quad \text{as} \quad n \to \infty
\]

Hence from (4) we have \(T_s z = z \) for all \(s \in S \). This completes the proof.

From Theorem 3.5 we also capture the following result announced by Ishihara [12].

Corollary 3.6. Let \(U, E, \) and \(S \) as in Theorem 3.5 and let \(S = \{T_s : s \in S\} \) be a lipschitzian semigroup on \(U \) with \(\limsup_s k_s < \bar{N}(E)^{-1/2} \). Suppose that \(\{T_s y : s \in S\} \) is bounded for some
\[y \in U \text{ and there exists a closed subset } C \text{ of } U \text{ such that } \bigcap_s \overline{\{T_t x : t \geq s\}} \subseteq C \text{ for all } x \in U. \]

Then there exists a \(z \in C \) such that \(T_s z = z \) for all \(s \in S \).

Now we state a fixed point theorem for total asymptotically nonexpansive semigroups defined on nonconvex domain in Banach spaces. We use a method of the proof of Theorem 3.5 to prove the following result.

Theorem 3.7. Let \(U \) be a nonempty subset of a Banach space \(E \) with \(\hat{N}(E) < 1 \) and let \(S = \{T_s : s \in S\} \) be a left reversible semitopological semigroup. Let \(S = \{T_s : s \in S\} \) be a total asymptotically nonexpansive semigroup on \(U \). Suppose that \(\{T_s y : s \in S\} \) is bounded for some \(y \in U \) and there exists a closed subset \(C \) of \(U \) such that \(\bigcap_s \overline{\{T_t x : t \geq s\}} \subseteq C \) for all \(x \in U \). Then there exists a \(z \in C \) such that \(T_s z = z \) for all \(s \in S \).

Proof. Fix \(\varsigma \in (\hat{N}(E), 1) \). Let \(B_s(x) = \overline{\{T_t x : t \geq s\}} \) and let \(B(x) = \bigcap_s B_s(x) \) for \(s \in S \) and \(x \in U \). Define \(\{x_n : n \geq 0\} \) by induction as follows:

\[x_0 = y, \]
\[x_n \in \mathcal{A}(\{B_s(x_{n-1})\}, B(x_{n-1})) \text{ untuk } n \geq 1 \]

Well-definedness of \(\{x_n\} \) follow from that \(B(x) \subseteq C \subseteq U \) for all \(x \in U \). Let \(r_n(x) = r((B_s(x_{n-1})), x) \) and \(r_n = r((B_s(x_{n-1})), B(x_{n-1})) \) for \(n \geq 1 \). Then from \(x_n \in B(x_{n-1}) = \bigcap_t B_t(x_{n-1}) \) for \(n \geq 1 \), and Lemma 2.3 we have

\[r_{n+1}(x_n) = \lim_{s} \sup \|T_s x_n - x_n\| \leq \lim_{s} \sup \lim_{t} \sup \|T_t x_{n-1} - T_s x_n\| \]
\[\leq \lim_{s} \sup \lim_{t} \sup \|T_s T_t x_{n-1} - T_s x_n\| \]
\[\leq \lim_{s} \sup \lim_{t} \sup (\|T_t x_{n-1} - x_n\| + k_s \phi(\|T_t x_{n-1} - x_n\|) + i_s) \]
\[\leq r_n(x_n) + \left(\lim_{s} \sup \left(k_s \lim_{t} \sup \phi(\|T_t x_{n-1} - x_n\|) + i_s \right) \right) \]
\[= r_n(x) \leq \varsigma \inf_{s} d(B_s(x_{n-1})) \]

and

\[\inf_{s} d(B_s(x_{n-1})) \leq \lim_{s} \sup \lim_{t} \sup \|T_t x_{n-1} - T_s x_{n-1}\| \]
\[\leq \lim_{s} \sup \lim_{t} \sup \|T_s T_t x_{n-1} - T_s x_{n-1}\| \]
\[\leq \lim_{s} \sup \lim_{t} \sup (\|T_t x_{n-1} - x_n\| + k_s \phi(\|T_t x_{n-1} - x_n\|) + i_s) \]
\[\leq r_n(x_{n-1}) + \left(\lim_{s} \sup \left(k_s \lim_{t} \sup \phi(\|T_t x_{n-1} - x_n\|) + i_s \right) \right) \]
Then we have

$$r_{n+1}(x_n) \leq \varphi r_n(x_{n-1}) \leq \varphi^n r_1(x_0)$$

and

$$\|x_{n+1} - x_n\| \leq r(B_s(x_n), B(x_n)) + r(B_s(x_n), x_n)$$

$$= r_{n+1} + r_{n+1}(x_n)$$

$$\leq \varphi r_{n+1}(x_n) + r_{n+1}(x_n)$$

$$\leq 2\varphi^n r_1(x_0)$$

for all $n \geq 1$. Then as in the proof of Theorem 3.5, it follows that the sequence $\{x_n\}$ converges to some $z \in C$ for which $T_s z = z$ for all $s \in S$. This completes the proof.

From Theorem 3.7 we are ready to capture the following result announced by Suantai and Puengrattana, who also give an alternative proof [18].

Corollary 3.8. Let S be a left reversible semitopological semigroup, U be a nonempty closed convex subset of a uniformly convex Banach space E, and $S = \{T_s : s \in S\}$ be a total asymptotically nonexpansive semigroup on U. Then S has a common fixed point if and only if $\{T_s x : s \in S\}$ is bounded for some $x \in U$.

Proof. The necessity is obvious. For sufficiency, this follows since a uniformly convex Banach space E has a property $\mathbb{N}(E) < 1$ [25]. These complete the proof.

4. CONCLUSIONS

We conclude the paper by stating the Hilbert space version of Theorem 3.7. The proof is too similar to that of Theorem 3.3 and is therefore omitted.

Theorem 3.9. Let U be a nonempty subset of a Hilbert space H and let S be a left reversible semitopological semigroup. Let $S = \{T_s : s \in S\}$ be a total asymptotically nonexpansive semigroup on U. Suppose that $\{T_s x : s \in S\}$ is bounded and $\bigcap_s \overline{\text{co}}\{T_t x : t \geq s\} \subseteq U$ for some $x \in U$. Then there exists a $z \in C$ such that $T_s z = z$ for all $s \in S$.

REFERENCES

