The Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by Pandawa Institute of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by Pandawa Institute and/or its licensors”

This Accepted Manuscript is © 2023 The Author(s). Published by Pandawa Institute

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 International License, this Accepted Manuscript is available for reuse under a CC BY 4.0 International License immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the license https://creativecommons.org/licenses/by/4.0/.

Although reasonable endeavors have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on Pandawa Institute once published for full citation and copyright details, as permissions may be required. All third-party content is fully copyright protected and is not published on a gold open access basis under a CC BY license, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.
Bioactivities

The Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication

Katrin Sak

NGO Praeventio, Tartu-50407 (Estonia)

Correspondence: katrin.sak.001@mail.ee

ORCID:

First AUTHOR: https://orcid.org/0000-0003-0736-2525

CONFLICT OF INTEREST

The author declares that there is no conflict of interest.
Bioactivities

The Role of Flavonoids as Potential Plant Fungicides in Preventing Human Carcinogenesis: A Short Communication

Abstract. In the context of the steadily increasing prevalence of malignant disorders all over the world, identification of any novel possibilities for suppressing carcinogenesis is crucial leading to saving human lives. One of the important sources of exposure to potential carcinogens is food products which can be contaminated with different types of mycotoxins. These structurally diverse chemicals are produced by certain fungi, whereas many of them may be associated with the development of malignant neoplasms in distinct organ systems. In this perspective article, the ability of specific plant secondary metabolites from the class of flavonoids to suppress the release of carcinogenic mycotoxins from certain fungi, mostly the members of Aspergillus and Penicillium genera, is highlighted. This finding might support the development of novel flavonoid-based plant fungicides in the future, to lower the contamination of food products with mycotoxins and thereby also reduce the cancer prevalence in humans. In addition, the application of flavonoids as natural products instead of synthetic chemicals in plant cultivation is probably also more acceptable for final consumers, representing an actual step toward a greener future.

Keywords: Plant fungal pathogens, mycotoxins, fungicides, plant-based diet, fruits and vegetables, carcinogenesis, chemoprevention

The importance of ingested food items in affecting the carcinogenesis process in humans is well accepted today, whereas this impact can be either protective or damaging. On the one hand, numerous plant secondary metabolites as constituents of plant-based diets have been shown to exert a wide range of potent antitumoral activities, behaving as antiproliferative, proapoptotic, anti-migratory, anti-invasive, anti-metastatic, and antiangiogenic agents in various models of different cancer types [1]-[3]. Such phytochemicals are widely recognized as chemopreventive compounds [4]. On the other hand, heterocyclic amines formed on the surface of red meat products within their processing at high cooking temperatures are known as carcinogenic and mutagenic chemicals [5]. In addition, several foods can be contaminated with specific mycotoxins which are also able to promote carcinogenesis in human beings after exposure to such dietary products [6][7]. Some of the most frequently occurring and toxicologically significant mycotoxins include aflatoxins, ochratoxins, fusarium toxins, and patulin. Aflatoxins
can be detected in foods such as peanuts, spices, pistachios, and maize, whereas aflatoxin B1 is recognized as the most potent naturally occurring carcinogen being related to the development of liver cancer in many animal species and humans. Aflatoxins B1, B2, G1, and G2 are currently classified as Group 1 carcinogens by the International Agency for Research on Cancer (IARC) [6][8][9]. Ochratoxin presents as three secondary metabolite forms which can be found in beverages such as beer and wine. Ochratoxin A is identified as a possible human carcinogen inducing damage to DNA and being linked to tumors in the urinary tract [6][10][11]. Fusarium toxins comprise a range of mycotoxins including fumonisins, trichotheccenes, and zearalenone, appearing mostly in grains such as wheat and maize. Fumonisins B1 and B2 are currently labeled as possible carcinogens by the IARC, based on sufficient evidence of their carcinogenicity in animal models [6][12]. Recent studies with experimental animals have described mutagenicity also for patulin, a mycotoxin found mainly in moldy fruits and vegetables, especially in rotting apples and figs. This chemical can damage DNA and induce severe impairment in the functioning of the immune system [6]. Despite extensive efforts, the exact molecular mechanisms under the carcinogenesis-promoting action of these mycotoxins are still only poorly understood today.

Mycotoxins are produced by diverse species of fungal pathogens. For example, aflatoxins are generated by Aspergillus fungi such as A. flavus and A. parasiticus [6][8]; ochratoxins are produced by Penicillium and Aspergillus species, mainly A. ochraceus and A. carbonarius [6][11]; fusarium toxins are relieved from diverse species of Fusarium genus [6][12]; while patulin is produced mostly by Penicillium, Aspergillus and Byssochlamys species, especially by P. expansum [6]. Over the past decade, several experimental studies have demonstrated that specific polyphenolic phytochemicals from the class of flavonoids can significantly inhibit the production of such fungal toxins. Low levels of two flavones, apigenin, and luteolin, inhibited aflatoxin B1 production in A. flavus [13]. The A. parasiticus-induced aflatoxins contamination in maize was significantly suppressed by citrus flavonoids naringin, neohesperidin, and quercetin [14]. Several citrus flavanones, including naringin, hesperidin, neohesperidin, prunin, and hesperetin glucoside, could inhibit also patulin production from P. expansum, A. terreus and B. fulva, leading to an almost complete decrease in the accumulation of this mycotoxin [15]. In addition, two common flavonols, quercetin, and rutin, reduced the ochratoxin A biosynthesis in A. carbonarius [16]. All these data indicate that certain flavonoids may be considered as potential plant fungicides for application in agriculture in the future to prevent the contamination of food products with carcinogenic mycotoxins (Figure 1).
Figure 1. Possibilities to inhibit human carcinogenesis by natural flavonoids through the decrease in the production of mycotoxins in food products.

Using natural fungicides instead of synthetic chemicals is more acceptable for final consumers. Furthermore, the added flavonoids might not only suppress the production of mycotoxins in respective food products, thereby preventing the exposure of human beings to these carcinogenic substances but simultaneously also exhibit a wide range of other important health benefits in the human body. Flavonoids have been indeed demonstrated to exert a wide range of advantageous activities, including anti-oxidant, anti-inflammatory, and antihyperglycemic effects [17]-[19]. Nutritionists became interested in these polyphenolic compounds already in the 1930s, when it was demonstrated that flavonoids from citrus fruits reduced capillary permeability and revealed vitamin C sparing properties [20]. Although the initial denomination of flavonoids as vitamin P was abandoned in the 1950s due to a lack of substantive evidence [20]; later on, these compounds drew once again the attention by providing protection against coronary heart diseases and diverse types of cancers in several large-scale epidemiological studies [21][22]. The exact mechanisms under anticancer bioactivities of flavonoids are currently intensely studied displaying effects on numerous molecular targets and cellular signaling pathways [23]. Such multifaceted action of flavonoids might remarkably contribute to the fight against different types of malignancies, especially considering the ever-increasing incidence of new cancer cases all over the world [24]. As cancerous neoplasms typically develop as a multistage process over many years, each effort to prevent their initiation, and suppress or reverse the progression of already initiated transformed cells to invasive malignancies is of critical relevance [25]. Therefore, although several important steps are still needed to be taken before flavonoids may be applied as potential plant fungicides, such as
elaboration of the most efficient formulations and proving their safety, these investigations
might contribute to the global fight against cancer, besides leading us toward a greener world
in the future.

REFERENCES

"Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice".
The Black Pepper (Piper nigrum L.) as Natural Product Used to an Herbal Medicine".
Open Access Macedonian Journal of Medical Sciences. 9 (F): 563-573.
Successes in Clinical Trials and Therapeutic Application". International Journal of
Molecular Sciences. 19 (1) : 263. 10.3390/ijms19010263.
10.18632/oncotarget.9593.
and cancer risk". Nutrition and Cancer. 61 (4): 437-446. 10.1080/01635580802710741.
mycotoxins, co-exposure, and carcinogenesis in humans: Short review". Reviews in
Mutation Research. 766 : 32-41. 10.1016/j.mrrev.2015.07.003.
and Cancer Risk: A Global Health Issue". International Journal of Environmental
and its involvement in oxidative stress and cancer development". Toxicology
aflatoxin-related liver cancer: systematic review and meta-analysis". European Journal
A blood concentration in healthy subjects and bladder cancer cases from Pakistan".
Mycotoxin Research. 21 (3): 164-167. 10.1007/BF02959255.
exposure". Journal of Toxicology and Environmental Health - Part B: Critical Reviews.
9 (3): 265-296. 10.1080/15287390500195570.
related to cancer initiation and promotion". Environmental Health Perspectives. 109
(Suppl 2): 291-300. 10.1289/ehp.01109s2291.
(2022). "Flavonoids Modulate Aspergillus flavus Proliferation and Aflatoxin
Bioactivities

